¸ÅÆ®·¦(MATLAB) ±âÃÊ+½Ç¹«


¸ÅÆ®·¦(MATLAB) Àº ¾Ë°í¸®Áò °³¹ß¿¡ »ç¿ëµÇ´Â ¾ð¾î·Î C¾ð¾î¿Í ¿¬µ¿ÇÏ¿© ÄÚµå»ý¼ºÀ» ÇÒ¼ö ÀÖ¾î ÇÁ·Î±×·¡¹Ö°³³äÀÌ ÀÖ´Ù¸é ÀÌÇØµµ°¡ ³ô½À´Ï´Ù. ¸ÅÆ®·¦ Àº ½Ã½ºÅÛ °³¹ßÀ̳ª °ËÁõÀÇ ¿ëµµ·Î »ç¿ëµÇ¸ç ¾îÇø®ÄÉÀÌ¼Ç °³¹ßµµ °¡´ÉÇØ MATLABÀ» »ç¿ëÇØº¸°Å³ª ¾Ë°í¸®ÁòÀ» ÁÖ·Î ´Ù·ç´Â °³¹ßÀÚ ºÐµéÀÌ ¸ÅÆ®·¦ ÇÔ¼ö ±âÃʺÎÅÍ ÇнÀÇϸé ÁÁ½À´Ï´Ù. ÇÁ·Î±×·¥¹ÖÀÛ¼º±â¹ýÀ» ¹ÙÅÁÀ¸·Î ¸ÅÆ®·¦ °ü·ÃÇÔ¼ö¿Í ½Ã¹Ä·¹À̼ÇÀ» À§ÇÑ ±×·¡ÇÁ¸¦ ÀÌÇØÇÒ¼ö ÀÖ°Ô µÇ¸ç ÇнÀ¿Ï·áÈÄ¿¡´Â °øÇÐÀûÀÎ µ¥ÀÌÅ͸¦ ºÐ¼®Çϴµ¥ ¸¹Àº µµ¿òÀ» ¹ÞÀ»¼ö ÀÖ½À´Ï´Ù.
- ¸ÅÆ®·¦ [ÀÔ¹®]
-
01.53ºÐ MATLAB ¼Ò°³ ¹× ±âº» ±â´É, ÇÁ·Î±×·¥ ÀÛ¼º±â¹ý part1
MatlabÀÇ Æ¯Â¡°ú ±â´É, ÇÔ¼ö, ±×·¡ÇÁ, °ü°è ¿¬»êÀÚ, ³í¸® ¿¬»êÀÚ, ¿¬»êÀÚ Á¾·ù
Ã¥°¥ÇÇ[00:00] MatlabÀÇ Æ¯Â¡°ú ±â´É/[00:30] MatlabÀÇ ±¸¼º/[02:03] ±âº» ¿¬»ê/[03:22] ÇÔ¼ö¿Í °¢µµÀÇ Ç¥Çö/[06:27] ÄÚµå ÁßÁö ¹æ¹ý/[07:00] ¹éÅÍÀÇ Ç¥Çö/[08:23] Áö¼ö, ·Î±×, Á¦°ö±Ù/[09:10] ¿ÜÁ¢°ú ³»Á¢/[11:11] Sum, Diag, Rank/[12:36] Eye, zeros, Ones, Rand/[13:41] º¹¼Ò¼ö, ½Ç¼öºÎ, Çã¼öºÎ/[15:13] ½ºÅ©¸° Ãâ·Â ¾ïÁ¦ ¹æ¹ý/[16:07] µ¥ÀÌÅÍÀÇ Ç¥Çö/[17:49] help ¸í··¾î, look for ¸í·É¾î/[18:22] Á¤¼ö¸¦ Ç¥ÇöÇÏ´Â ¹æ¹ý/[19:06] º¯¼öÀÇ Ã³¸®/[20:00] ±âÈ£¸¦ ÀÌ¿ëÇÑ ¿¬»ê/[21:23] Expand, Factor, Simplify, Subs/[24:09] mÆÄÀÏ/[27:51] ³»Àå ÇÔ¼ö¿Í »ç¿ëÀÚ Á¤ÀÇ ÇÔ¼ö/[32:42] inlineÇÔ¼ö¸¦ ÀÌ¿ëÇÑ ¿©·¯°³ÀÇ º¯¼ö Ç¥Çö/[33:22] ±×·¡ÇÁ Ãâ·Â°ú ¼öÁ¤/[39:58] hold on, hold off/[42:47] Grid On/[43:06] ³í¸® ¿¬»êÀÚ/[43:52] °ü°è ¿¬»êÀÚ -
02.55ºÐ ÇÁ·Î±×·¥ ÀÛ¼º±â¹ý part2, ±×·¡ÇÁ ¼Ó¼º, 2Â÷¿ø ±×·¡ÇÁ
find ¸í·É¾î, if¹®, for loop, while loop, switch, cell, ±¸Á¶Ã¼, ¹®ÀÚ¿, ±Û·Î¹úº¯¼ö, ÆÛ½Ã½ºÅÏÆ®º¯¼ö, ±×·¡ÇÁÀǼӼº, ÀÌÂ÷¿ø±×·¡ÇÁ
Ã¥°¥ÇÇ[00:00] find/[01:00] isfinite /[02:21] ÇÁ·Î±×·¥ È帧 Á¦¾î/[03:31] else, elseif/[04:20] for, for loop/[05:31] continue/[06:26] while, while loop/[08:33] switch/[09:37] otherwise/[10:57] µ¥ÀÌÅÍÀÇ Çü½Ä(cell)/[13:58] µ¥ÀÌÅÍÀÇ Çü½Ä(±¸Á¶Ã¼)/[14:33] struct/[18:15] µ¿Àû±¸Á¶Ã¼/[21:01] ¹®ÀÚ¿(double, char, cellstr, int2str, num2str, sprintf)/[26:39] strcat, strcmp, findstr/[28:55] isspace, isletter, strrep/[30:35] ±Û·Î¹úº¯¼ö, Àü¿ªº¯¼ö/[35:07] ÆÛ½Ã½ºÅÏÆ®(persistent) º¯¼ö/[35:59] persistentº¯¼ö¿Í Àü¿ªº¯¼ö Â÷ÀÌÁ¡/[38:00] ±×·¡ÇÁ ¼Ó¼º°ú 2Â÷¿ø ±×·¡ÇÁ/[39:14] ±×·¡ÇÁ ¼± ¸ð¾ç, »ö»ó º¯°æ/[41:05] °ÝÀÚ, ¶óº§, ¹ü·Ê Ãß°¡(xabel, ylabel, legend)/[43:29] ±×·¡ÇÁ Ãà ¼Ó¼º ¼³Á¤(axis, tight)/[45:05] ±×·¡ÇÁ¿¡¼ Ư¼ö¹®ÀÚ Ç¥ÇöÇÏ´Â ¹æ¹ý/[46:05] ±×·¡ÇÁ Ç¥Çö ¹æ¹ý1/[46:52] ±×·¡ÇÁ Ç¥Çö ¹æ¹ý2(subplot, fplot)/[49:03] ±×·¡ÇÁ Ç¥Çö ¹æ¹ý3(linewidth, markersize)/[50:22] ±×·¡ÇÁ Ç¥Çö ¹æ¹ý4(square, figure)/[51:57] ±×·¡ÇÁÀÇ ÀúÀå°ú È£Ãâ/[53:07] ÆÄ¶ó¸ÞÅÍ ±×·¡ÇÁ(axis)/[54:31] log ôµµ ±×·¡ÇÁ(semilogx, semilogy, loglog) -
03.58ºÐ 2Â÷¿ø ±×·¡ÇÁ, 3Â÷¿ø ±×·¡ÇÁ, ÇÚµé ±×·¡ÇÁ
µî°í¼±±×·¡ÇÁ, ¸·´ë±×·¡ÇÁ, È÷½ºÅä±×·¥±×·¡ÇÁ, plot3ÇÔ¼ö, meshÇÔ¼ö, surfÇÔ¼ö, colormap, Åë°è ±×·¡ÇÁ, ÇÚµé ±×·¡ÇÈ, ±×·¡ÇÁ ¼Ó¼º
Ã¥°¥ÇÇ[00:00] µî°í¼± ±×·¡ÇÁ(clable)/[02:54] ±ØÁÂÇ¥ ±×·¡ÇÁ(polar)/[04:06] ¸·´ë ±×·¡ÇÁ(bar)/[04:55] È÷½ºÅä±×·¥ ±×·¡ÇÁ(hist)/[05:35] ¿¡·¯¹Ù ±×·¡ÇÁ(ones, errorbar)/[06:56] 3Â÷¿ø ±×·¡ÇÁ ±×¸®´Â ¹æ¹ý(plot3, ezplot3)/[09:56] 3Â÷¿ø¿¡¼ ¸éÀ» »ý¼ºÇÏ´Â ÇÔ¼ö(mash, surf)/[11:00] Çà·Ä·Î Ç¥Çö(meshgrid)/[13:08] hidden off/[14:20] surf/[17:07] meshgrid, surf, shading flat, shading interp/[19:10] surfnorm, peak/[19:36] 3Â÷¿ø ±×·¡ÇÁÀÇ ¼öÁØ °î¼±(contour3)/[20:55] 3Â÷¿ø ±×·¡ÇÁ·Î 4Â÷¿ø Ç¥Çö(slice)/[23:37] 3Â÷¿ø ±×·¡ÇÁ·Î ¾Ö´Ï¸ÞÀÌ¼Ç Á¦ÀÛ(drawnow, zlim, getframe, movie)/[27:20] avi µ¿¿µ»ó ÆÄÀÏ·Î º¯È¯(movie2avi)/[28:12] Ä÷¯¸Ê(colormap, colobar)/[31:00] ±×·¡ÇÁ ¹Ù¶óº¸´Â ½Ã°¢ º¯°æ(view, light, rotate3d)/[34:40] ±×·¡ÇÁ ³» ƯÁ¤ ¿µ¿ª ÃßÃâ(peaks, find)/[37:11] Åë°è ±×·¡ÇÁ - 3Â÷¿ø ¸·´ë ±×·¡ÇÁ(bar3, bar3h)/[39:23] Åë°è ±×·¡ÇÁ - 3Â÷¿ø ÆÄÀÌ ±×·¡ÇÁ(pie3)/[40:50] ÇÚµé ±×·¡ÇÁ(set, get, find object)/[48:37] ÇÚµé ±×·¡ÇÁÀÇ ±Ù°ú ±âº»¼ºÁú/[50:25] °³Ã¼ ¼Ó¼º/[51:50] ÇÚµéÀ» ÀÌ¿ëÇÏ¿© ¾Ö´Ï¸ÞÀ̼ǿ¡ Àû¿ë(comet, comet3, linspace)/[53:32] Á¤±ÔºÐÆ÷ Histogram »ý¼º(hist)/[56:09] gca(TickDir)/[57:00] gca(fontsize) -
04.54ºÐ Çà·Ä°ú ¼±Çü´ë¼ö part1
Çà·Ä ¿ø¼Ò/Çà·Ä »ý¼º ¸í·É¾î/Çà·Ä ¿¬»ê/Çà·Ä ó¸®/sparse/nnz/whos/spdiags/spy/gplot/¼±Çü¹æÁ¤½Ä/ġȯÇà·Ä/»ï°¢Çà·Ä
Ã¥°¥ÇÇ[00:12] Çà·ÄÀ» ±¸¼ºÇϰí ÀÖ´Â ¿ø¼Ò/[00:18] ¿¹½Ã/[01:04] Çà·Ä ³»¿¡¼ ºÎºÐ Çà·Ä »Ì¾Æ³»±â1/[01:45] Çà·Ä ³»¿¡¼ ºÎºÐ Çà·Ä »Ì¾Æ³»±â2/[02:34] ¸ðµç ÇàÀ̳ª ¸ðµç ¿ ÁöÁ¤Çϱâ/[03:04] ¸¶Áö¸· ÇàÀ̳ª ¸¶Áö¸· ¿ Ãâ·ÂÇϱâ/[03:57] primes/[04:20] º¤ÅÍ·Î ³ªÅ¸³ª´Â °ªµéÀ» Çà·ÄÀÇ ÇüÅ·Πǥ½ÃÇϱâ/[04:31] zeros/[05:08] primes/[05:40] ÀüüÇà·ÄÀ» »ç¿ëÇÏ¿© ¿·Î ³ª¿µÈ °É ÇàÀ¸·Î ³ª¿µÇ°Ô ¹Ù²Ù±â/[06:09] [] ´ë°ýÈ£·Î 0x0 Çà·Ä ³ªÅ¸³»±â/[06:41] ÇàÀ̳ª ¿ »èÁ¦Çϱâ/[07:24] Çà·Ä »ý¼ºÇÏ´Â ¹æ¹ý/[07:43] size.length/[07:58] size/[08:23] length/[08:27] size.length/[08:39] Çà·Ä »ý¼º ¸í·É¾î ¼³¸í/[09:13] rand¿Í randn ÇÔ¼ö Â÷ÀÌÁ¡/[09:37] rand,randn/[10:17] repmat/[11:34] eye zeros/[11:53] blkdiag/[12:25] Ư¼öÇÑ Çà·Ä/[12:48] ¸¶¹æÁø Çà·Ä »ý¼º/[13:11] magic/[13:31] toeplitz Çà·Ä »ý¼º/[14:51] hankel Çà·Ä/[16:04] Çà·Ä ¿¬»ê/[16:51] °ö¼À ¿¹½Ã/[17:04] eye/[18:18] expm.funm.logm.sqrtm/[19:08] Å©·Î´ÏÄ« °ö/[20:54] kron/[21:22] Çà·Ä ó¸®/[21:43] reshape/[22:07] reshape/[23:32] diag/[24:42] diag/[25:39] diag/[26:17] tril, triu ÇÔ¼ö/[26:50] tril/[26:57] triu/[27:31] ¼º±äÇà·Ä ¼³¸í/[28:10] sparse ÇÔ¼ö/[28:13] (i,j,s)/[29:18] ¿¹½Ã/[29:41] ´ë°¢ Çà·Ä/[30:52] Ãæ¸¸Çà·Ä/[30:57] full ÇÔ¼ö/[31:21] sparse ¸í·É¾î/[32:22] nnz/[32:41] whos/[33:09] spdiags Çà·Ä/[33:19] spdiags ÇÔ¼ö/[36:05] Çà·ÄÀÇ Å©±â/[36:49] ½ÇÁúÀûÀ¸·Î ¼º±äÇà·ÄÀÌ Àû¿ëµÇ´ÂÁö ¾Ë¾Æº¸±â ¿¹Á¦/[38:54] airfoil¿¡ ´ëÇÑ Á¡ÀÇ ÁÂÇ¥ ¹Þ¾Æ¿À±â/[39:15] ¼º±ä ÀÎÁ¢ Çà·Ä »ý¼º/[40:00] spy ÇÔ¼ö/[40:20] ±×·¡ÇÁ·Î Ç¥½Ã/[40:55] gplot/[41:05] ±×·¡ÇÁ·Î Ç¥½Ã/[41:21] axis off/[41:29] ±×·¡ÇÁ·Î Ç¥½Ã/[41:36] ¼±Çü ¹æÁ¤½Ä ½Ã½ºÅÛ/[42:24] A Çà·Ä »ý¼º/[42:53] B º¤ÅÍ »ý¼º/[43:22] \(¹é ½½·¯½Ã)¸¦ »ç¿ëÇÏ¿© ÇØ ±¸Çϱâ/[44:32] ġȯ°ú »ï°¢Çà·Ä/[44:36] ġȯ Çà·Ä/[44:58] ¿¹½Ã/[45:23] ġȯ º¤ÅÍ/[48:33] ġȯ Çà·ÄÀ» Æ÷ÇÔÇÏ´Â ¼±Çü ¹æÁ¤½Ä/[49:54] »ï°¢ Çà·Ä/[50:14] »óºÎ»ï°¢Çà·Ä/[50:23] ÇϺλﰢÇà·Ä/[50:28] ´ÜÀ§ ÇϺλﰢÇà·Ä/[51:31] LU ÀμöºÐÇØ/[53:35] ¿¹½Ã/[53:41] ¸¶¹æÁø Çà·Ä »ý¼º -
05.53ºÐ Çà·Ä°ú ¼±Çü´ë¼ö part2, µ¥ÀÌÅÍ ºÐ¼®°ú °î¼±Á¢ÇÕ part1
¼±Çü ´ë¼ö/EIG/poly/polyvalm/µ¥ÀÌÅͺм®/filterÇÔ¼ö/scatterÇÔ¼ö/covÇÔ¼ö/varÇÔ¼ö/corrcoefÇÔ¼ö/plotmatrixÇÔ¼ö/convhull/delaunay
Ã¥°¥ÇÇ[00:00] ¼±Çü ´ë¼öÀÇ °íÀ¯°ª ±¸Çϱâ/[00:55] °íÀ¯Ä¡ ¹®Á¦ ¼³¸í/[02:01] Ư¼º ¹æÁ¤½Ä/[02:20] eig/[02:38] eig/[03:26] poly.polyvalm/[04:02] poly.polyvalm/[04:52] µ¥ÀÌÅÍ ºÐ¼®°ú °î¼±Á¢ÇÕ/[05:16] µ¥ÀÌÅÍ ºÐ¼®°ú 󸮸¦ À§ÇÑ ÇÔ¼ö/[06:47] sort/[07:06] sum/[07:31] sort/[08:39] sum/[09:16] sort/[09:41] µ¥ÀÌÅÍ¿¡¼ ÃÖ´ë°ª°ú ÃÖ¼Ò°ª ±¸Çϱâ/[10:18] max/[11:06] minÀ¸·Î ÇàÀÇ Àüü¿¡¼ °¡Àå ÀÛÀº ¿ø¼Ò ±¸Çϱâ1/[11:25] min°ú :(ÄÝ·Ð)À¸·Î ÇàÀÇ Àüü¿¡¼ °¡Àå ÀÛÀº ¿ø¼Ò ±¸Çϱâ2/[13:08] Æò±Õ°ú Áß¾Ó°ª/[13:24] mean/[13:35] median/[14:02] mean/[14:07] median/[15:12] std/[15:23] µ¥ÀÌŸ °ª Â÷ÀÌ ±¸ÇÏ´Â ¸í·É¾î/[15:44] diff/[16:08] NaN °ª ó¸®/[17:04] mean/[17:24] mean/[17:16] isnan/[17:47] isnan/[17:57] isnan/[18:27] NaN °ª Á¦°ÅÇϱâ/[18:57] ¿¹½Ã/[19:58] traffic/[20:14] mean/[20:21] std/[21:26] plot/[22:13] hold/[22:18] ones/[23:26] plot/[23:53] hold on/[24:03] filter/[24:18] plot/[24:25] ±×·¡ÇÁ È®ÀÎ/[25:11] À̵¿ Æò±Õ ÇÊÅ͸µ/[25:44] À̵¿ Æò±Õ ÇÊÅÍÀÇ ±âº» ÇüÅÂ/[25:51] ±¸ÇöÇØº¸±â/[26:02] filter ÇÔ¼ö·Î ³ªÅ¸³»±â/[27:14] °¡ÁßÄ¡ ºÎ¿©/[32:23] ºÐ»ê µ¥ÀÌÅ͸¦ ±×·¡ÇÁ·Î Ç¥ÇöÇϱâ/[32:30] scatter ÇÔ¼ö/[33:02] filled ¿É¼Ç/[34:07] cov ÇÔ¼ö/[34:48] var ÇÔ¼ö/[35:07] cov matrix/[37:28] »ó°ü°è¼ö/[37:37] corrcoef ÇÔ¼ö/[38:14] std ÇÔ¼ö·Î Ç¥ÁØÆíÂ÷ ±¸Çϱâ/[39:19] º¯¼ö°¡ 3°³ÀÎ °æ¿ì »ó°ü°ü°è ±¸Çϱâ/[39:36] scatter3 ÇÔ¼ö/[42:41] plotmatrix ÇÔ¼ö/[43:13] ºÐ»ê µ¥ÀÌÅÍÀÇ ÃÖ±ÙÁ¢Á¡ ¹®Á¦ ºÐ¼®/[44:05] ÃÖ±ÙÁ¢Á¡ ¹®Á¦ ÇØ¼®Çϴµ¥ ÀÌ¿ëµÇ´Â ÇÔ¼ö/[44:13] convhull/[46:43] delaunay »ï°¢È/[46:58] ¿¹½Ã/[48:59] triplot ÇÔ¼ö/[49:31] load airfoil/[49:39] sparse ÇÔ¼ö/[50:04] gplot/[50:56] delaunay ÇÔ¼ö/[51:12] triplot ÇÔ¼ö /[51:50] delaunay ÇÔ¼ö/[51:56] trisurf ÇÔ¼ö/[52:00] trimesh ÇÔ¼ö/[52:27] 3Â÷¿øÀ¸·Î µ¥ÀÌÅÍ plot/[52:53] x(°æµµ),y(À§µµ),z(°íµµ)/[53:17] 3Â÷¿ø ±×·¡ÇÁÈ -
06.1½Ã°£ 1ºÐ µ¥ÀÌÅÍ ºÐ¼®°ú °î¼±Á¢ÇÕ part2, Simulink part1
DelaunayTri/Voronoi/µ¥ÀÌÅÍ ´ÙÇ×½Ä Á¢ÇÕ/interpolation/lagrange/º¸°£¹ý/SplineÀ» ÀÌ¿ëÇÑ º¸°£¹ý/EXCEL µ¥ÀÌÅÍ ºÒ·¯¿À´Â ¹æ¹ý/xlsread/importdata/exlink Åø¹Ú½º/Simulink/ºí·Ï ÆÄ¶ó¹ÌÅÍ
Ã¥°¥ÇÇ[00:00] ÃÖ ±ÙÁ¢Á¡ Ž»öÇϱâ/[00:04] DelaunayTri ÇÔ¼ö/[00:29] load/[00:48] DelaunayTri ÇÔ¼ö ¾µ ¶§ ÁÖÀÇÁ¡/[01:11] Ÿ°Ù ÀÓÀÇ ÁöÁ¤/[01:26] nearestNeighbor ÇÔ¼ö/[02:41] pointLocation ÇÔ¼ö/[03:15] tri Çà·Ä/[04:23] plot/[04:31] hold/[05:12] ½ÇÇà/[05:47] Voronoi ¼³¸í/[06:15] Voronoi ÇÔ¼ö/[06:30] load/[06:51] ½ÇÇà/[07:20] µ¥ÀÌÅÍ ´ÙÇ×½Ä Á¢ÇÕ ¼³¸í/[07:38] ¼ö½Ä ¼³¸í/[10:31] ¿¹½Ã/[10:47] polyfit/[11:33] linspace/[11:39] polyval/[11:59] plot/[12:02] plot-¸í·É¾î/[12:14] ½ÇÇà/[13:44] µ¥ÀÌÅÍ ´ÙÇ×½Ä Á¢ÇÕ Åø ÀÌ¿ë/[13:54] ¿¹½Ã/[14:11] ½ÇÇà/[14:14] Basic Fitting/[14:49] ±×·¡ÇÁ º¸±â/[15:14] º¸°£¹ý/[16:24] lagrange ¼ö½Ä/[19:25] ¾Ë°í¸®ÁòÀ» Åä´ë·Î ÀÛ¼º/[19:41] lagrange/[19:59] length/[20:28] zeros/[21:13] for¹® ¼³¸í/[21:20] ones/[24:00] ¸ÞÀÎ ½ºÅ©¸³Æ® m ÆÄÀÏ ÀÛ¼º/[24:25] lagrange/[24:34] plot/[24:38] plot-¸í·É¾î/[25:03] ³»ÀåµÇ¾î ÀÖ´Â º¸°£¹ý ÇÔ¼öµé/[25:16] 1Â÷¿ø º¸°£¹ý/[25:50] º¸°£¹ý ¿É¼Ç/[26:28] ¿¹½Ã/[26:44] lagrange/[26:54] interp1.interp2/[27:26] linspace/[27:43] plot/[27:47] plot-¸í·É¾î/[28:07] legend/[28:21] hold/[28:23] plot-¸í·É¾î/[29:17] 2Â÷¿ø º¸°£¹ý/[28:45] ½ÇÇà/[29:27] griddata/[30:11] rand/[31:18] meshgrid/[31:29] griddata/[31:46] mesh/[31:51] plot3/[31:58] ½ÇÇà/[32:24] SplineÀ» ÀÌ¿ëÇÑ º¸°£¹ý/[32:53] °áÀý/[33:48] linspace/[34:44] plot/[35:03] µ¥ÀÌÅÍ/[35:30] inputÆÄÀÏÀ» ±×´ë·Î Ȱ¿ëÇÏ´Â ¹æ¹ý/[35:43] EXCEL µ¥ÀÌÅÍ ºÒ·¯¿À´Â ¹æ¹ý/[35:47] Import Data/[35:52] xlsread ¸í·É¾î/[35:57] Import data ÇÔ¼ö/[40:50] ¿¬µµº° Àü±¹ ¼®Â÷ ±¸Çϱâ/[41:28] grade.xlsx/[41:56] Matlabó¸® µ¥ÀÌÅ͸¦ ¿¢¼¿ÆÄÀÏ·Î ÀúÀå/[42:00] xlswrite/[42:20] °á°ú È®ÀÎ/[43:50] colheaders/[44:39] EXCEL µ¥ÀÌÅÍÀÇ Ã³¸® °úÁ¤/[44:52] Import Data ¸Þ´º·Î µ¥ÀÌÅÍ ºÒ·¯¿À±â/[45:23] ±×·¡ÇÁ·Î ³ªÅ¸³»±â/[45:46] °á°ú È®ÀÎ/[45:58] ´Ù¾çÇÑ ÇüÅÂÀÇ ±×·¡ÇÁ »ý¼º ¹æ¹ý/[47:11] µ¥ÀÌÅÍÀÇ ÀϺθ¸ ÀúÀåÇϱâ/[48:00] exlink Åø¹Ú»çÀÇ ÀÌ¿ë/[48:22] »ç¿ë °¡´ÉÇÑ Ãß°¡ ±â´É Ãß°¡Çϱâ/[50:11] µ¥ÀÌÅÍÀÇ ÀϺθ¸ MATLABÀ¸·Î º¸³»±â/[50:57] plot ¸í·É¾î/[51:08] Get MATLAB figure/[52:11] 3D ¼¿ÆÛ½º ±×·¡ÇÁ ÀÛ¼º ¹æ¹ý/[52:41] meshgrid/[52:51] surf/[53:26] exlink/[53:33] Simulink/[54:11] Simulink ½ÃÀÛ ¹æ¹ý/[56:08] ¼Ò½º ºÒ·¯¿À±â/[57:14] ºí·Ï ¿¬°áÇϱâ/[57:33] ¼± »èÁ¦, Àß¶ó³»±â/[57:59] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[58:08] ½Ã¹Ä·¹ÀÌ¼Ç ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[59:47] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[59:55] °á°ú È®ÀÎ/[01:00:05] Open Block/[01:00:29] Amplitude °ª º¯°æ -
07.51ºÐ Simulink part2
ºí·Ï ÆÄ¶ó¹ÌÅÍ Ç¥½Ã/º¹¼ö µ¥ÀÌÅÍ Ç¥½Ã/Mux ºí·Ï »ç¿ë/Scope ÆÄ¶ó¹ÌÅÍ º¯°æ/µ¿Àû ½Ã¹Ä·¹À̼Ç/1Â÷ ÇÊÅÍ/2Â÷ ¹ÌºÐ¹æÁ¤½Ä/µ¿Àû ½Ã¹Ä·¹À̼Ç/¼±Çü »óꝼö/DC¸ðÅÍÀÇ ½Ã¹Ä·¹À̼Ç
Ã¥°¥ÇÇ[00:00] ºí·Ï ÆÄ¶ó¹ÌÅÍ Ç¥½Ã ¹æ¹ý/[00:20] ¼Ò½º ºÒ·¯¿À±â/[00:31] Block Properties/[01:20] º¹¼ö µ¥ÀÌÅÍ Ç¥½Ã ¹æ¹ý/[01:54] Mux ºí·Ï »ç¿ë/[02:51] °á°ú È®ÀÎ/[02:57] ScopeÀÇ ÆÄ¶ó¹ÌÅ͸¦ º¯°æÇÏ´Â ¹æ¹ý/[03:37] °á°ú È®ÀÎ/[03:46] µ¿Àû ½Ã¹Ä·¹À̼Ç/[03:48] 1Â÷ ÇÊÅÍ/[04:17] º¯¼ö ÁöÁ¤/[05:10] ½ºÅ©¸³Æ® ½ÇÇà/[05:27] Simulink È®ÀÎ/[05:38] ¼Ò½º ºÒ·¯¿À±â/[06:31] ºí·Ï ¿¬°áÇϱâ/[06:53] Ãâ·Â°ª ºÐ±â/[07:46] Mux ºí·Ï Àû¿ë/[08:05] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[08:43] Àü´Þ ÇÔ¼ö ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[09:34] ½Ã¹Ä·¹ÀÌ¼Ç ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[10:23] ½Ã¹Ä·¹ÀÌ¼Ç ½ÇÇà/[10:53] »õ·Î¿î ½ºÅ©¸³Æ® »ý¼º/[11:08] plot/[11:27] axis/[11:32] axis ¸í·É¾î/[11:55] 2Â÷ ¹ÌºÐ¹æÁ¤½Ä ½Ç½À1/[12:24] ÀûºÐ±â ºí·Ï/[13:14] ÀûºÐ±â ºí·Ï °¡Á®¿À±â/[13:35] ºí·Ï ¿¬°áÇϱâ/[15:14] »ó¼ö¿¡ ÀÇÇÑ °ö/[15:45] ºí·Ï ¿¬°áÇϱâ/[16:17] ¶óº§ ÀÔ·Â/[17:41] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[18:57] ½Ã¹Ä·¹ÀÌ¼Ç ÀúÀå/[19:30] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[20:08] ºñµ¿Â÷ ¹æÁ¤½Ä/[21:18] ¼Ò½º ºÒ·¯¿À±â/[22:08] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[22:50] configuration parameters/[23:18] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[23:43] ¼±Çü »óꝼö ¸ðµ¨/[23:56] ¼ö½Ä »ìÆìº¸±â/[24:46] ºí·Ï ¸ðµ¨ ±¸¼ºÇϱâ/[25:06] ¼Ò½º ºÒ·¯¿À±â/[25:44] ºí·Ï ¿¬°áÇϱâ/[25:50] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[27:03] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[28:05] ¼±Çü »óꝼö ¸ðµ¨/[28:35] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[30:25] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[30:50] DC¸ðÅÍÀÇ ½Ã¹Ä·¹À̼Ç/[30:50] ¼ö½Ä »ìÆìº¸±â-°ø±Þ Àü¾Ð/[31:21] ¼ö½Ä »ìÆìº¸±â-¿ª±âÀü·ÂÀü¾Ð/[31:35] ¼ö½Ä »ìÆìº¸±â-¸ðÅÍ ÅäÅ©/[32:32] ¹æÀû½ÄÇ¥ »ìÆìº¸±â/[34:38] Step ºí·Ï °¡Á®¿À±â/[35:07] ºí·Ï ÆÄ¶ó¹ÌÅÍ °ª ³Ö±â/[36:00] Add ºí·Ï °¡Á®¿À±â/[36:08] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¹Ù²Ù¾î ÁÜ/[36:57] Gain ºí·Ï °¡Á®¿À±â/[37:26] ºí·Ï À̸§ º¯°æ/[38:45] Gain ºí·ÏÀÇ º¹»ç¿Í ºÙ¿©³Ö±â/[39:10] ºí·Ï ¹æÇâ º¯°æ(Ctrl+R)/[39:53] ÅäÅ© °è»ê/[40:55] Add ºí·ÏÀÇ º¹»ç¿Í ºÙ¿©³Ö±â/[41:38] Gain ºí·° º¹»ç, ¿¬°á/[42:40] ȸÀü°ª °¡¼Óµµ/[42:53] Ãâ·Â°ª ºÐ±â/[43:20] Ãâ·Â¹ÞÀ» °ª ÁöÁ¤/[45:08] Ãâ·Â°ªÀ» MATLABÀ¸·Î À̵¿/[45:42] Mux ºí·Ï °¡Á®¿À±â/[46:42] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[47:53] subplot/[47:58] plot/[48:41] xlabel.ylabel/[48:52] xlim.ylim.zlim/[49:07] °á°ú È®ÀÎ -
08.48ºÐ Simulink part3, º¯È¯, Á¦¾î°øÇÐ part1
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë/·ÎÁö½ºÆ½ ¹ÌºÐ¹æÁ¤½Ä/Subsystem/Â÷ºÐ ¹æÁ¤½ÄÀÇ ¸ðµ¨¸µ/Laplace º¯È¯/¿ª Laplace º¯È¯/Z-º¯È¯/Fourier º¯È¯/°í¼Ó Fourier º¯È¯/ÀÌ»ê Fourier º¯È¯/Àü´Þ ÇÔ¼ö
Ã¥°¥ÇÇ[00:00] ÇÔ¼ö ºí·Ï »ç¿ë ¹æ¹ý/[01:28] Ramp ºí·Ï°ú Scope ºí·Ï °¡Á®¿À±â/[02:04] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[02:56] ½Ã¹Ä·¹ÀÌ¼Ç ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[03:31] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[04:08] ¼³Á¤°ª º¯°æ/[04:33] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[05:48] MATLAB Function ºí·Ï °¡Á®¿À±â/[06:11] Complex to Real-Imag, Magnitude-angle ºí·Ï °¡Á®¿À±â/[07:01] ºí·Ï ¿¬°áÇϱâ/[07:20] MATLAB Function ¼³Á¤/[08:29] Simulink ¿¡·¯ ¹ß»ý½Ã ÇØ°á¹æ¹ý/[09:09] ½Ã¹Ä·¹ÀÌ¼Ç ÆÄ¶ó¹ÌÅÍ ¼öÁ¤/[09:23] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[09:45] ·ÎÁö½ºÆ½ ¹ÌºÐ¹æÁ¤½Ä(ÇÔ¼ö ºí·ÏÀÇ ¹Ì»ç¿ë)/[10:05] ·ÎÁö½ºÆ½ ¹ÌºÐ¹æÁ¤½ÄÀÇ ±âº» ÇüÅÂ/[11:49] Integrator ºí·Ï °¡Á®¿À±â/[12:18] Gain ºí·Ï °¡Á®¿À±â/[12:32] Sum ºí·Ï°ú add ºí·Ï/[13:55] ºí·Ï ¿¬°áÇϱâ/[14:03] Product ºí·Ï °¡Á®¿À±â/[15:29] ºí·Ï À̸§ º¯°æ/[15:45] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[16:12] ½Ã¹Ä·¹ÀÌ¼Ç ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[16:40] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[16:57] ·ÎÁö½ºÆ½ ¹ÌºÐ¹æÁ¤½Ä(ÇÔ¼ö ºí·ÏÀÇ »ç¿ë)/[17:21] MATLAB Function ºí·Ï °¡Á®¿À±â/[17:43] MATLAB Function ¼³Á¤/[18:06] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[18:25] ÇÔ¼ö ºí·Ï »ç¿ëÀÇ ÇѰè/[19:32] Subsystem(ºÎ ½Ã½ºÅÛ)À¸·Î ±¸¼ºÇϱâ/[20:29] ½Ã¹Ä·¹ÀÌ¼Ç ½ÇÇà/[20:49] Model Browser/[21:24] Â÷ºÐ ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ/[21:37] Â÷ºÐ ¹æÁ¤½ÄÀÇ ¿¹/[22:21] Unit Delay ºí·Ï °¡Á®¿À±â/[22:57] Gain ºí·Ï °¡Á®¿À±â/[23:26] ºí·Ï ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[23:40] Scope ºí·Ï °¡Á®¿À±â/[24:03] ½Ã¹Ä·¹ÀÌ¼Ç ÆÄ¶ó¹ÌÅÍ ¼³Á¤/[24:19] ½Ã¹Ä·¹ÀÌ¼Ç ¼öÇà/[24:42] Laplace º¯È¯ÀÇ ±â´É/[25:12] Laplace º¯È¯ ¼ö½Ä »ìÆìº¸±â/[26:13] ¼±Çü ÇÔ¼ö/[26:26] syms ¸í·É¾î/[26:41] cos ¿À¸Þ°¡ t/[27:15] ÇÔ¼ö¿¡ ´ëÇÑ Laplace º¯È¯/[27:28] °á°ú È®ÀÎ/[28:44] Laplace º¯È¯ °ü°è/[29:09] ¼ö½Ä »ìÆìº¸±â/[30:55] ¿ª Laplace º¯È¯/[31:22] Laplace º¯È¯À» ÀÌ¿ëÇÑ ¹ÌºÐ¹æÁ¤½ÄÀÇ Ç®ÀÌ/[31:29] ¿ª Laplace º¯È¯ ¼ö½Ä »ìÆìº¸±â/[34:02] heaviside ÇÔ¼ö/[34:33] ¿ª Laplace º¯È¯ ¼öÇà/[35:53] Z-º¯È¯/[36:07] Z-º¯È¯ ¼öÇà/[36:45] Fourier º¯È¯/[36:54] Fourier º¯È¯ ¼ö½Ä »ìÆìº¸±â/[37:06] ¼ö½Ä ±¸ÇöÇϱâ/[37:11] ¿ªº¯È¯ (I Fourier)/[38:03] pretty/[38:26] simplify ¸í·É¾î/[38:44] °¡¿À½Ã¾È ÇüÅÂÀÇ ±×·¡ÇÁ¸¦ Fourier º¯È¯/[39:10] ezplot/[39:25] ±×·¡ÇÁ·Î Ç¥Çö/[39:36] °í¼Ó Fourier º¯È¯(Fast Fourier Transform(FFT))/[40:53] fft.ifft/[41:21] Á¦¾î°øÇп¡ Matlab Á¢¸ñ/[41:28] Àü´Þ ÇÔ¼ö/[41:36] Àü´Þ ÇÔ¼ö ¼ö½Ä »ìÆìº¸±â1/[42:37] ·¡Áöµà ÇÔ¼ö/[43:06] [r(ºÐÀÚÇ×),p(±ØÁ¡Ç×),k(ÀÜ·ùÇ×)]/[43:56] Àü´Þ ÇÔ¼ö ¼ö½Ä »ìÆìº¸±â2/[44:58] ¼ö½Ä ±¸ÇöÇϱâ/[45:34] z(¿µÁ¡), p(±ØÁ¡), k(À̵氪)/[46:21] °á°ú È®ÀÎ/[46:33] polyval ÇÔ¼ö -
09.45ºÐ Á¦¾î°øÇÐ part2, ¹ÌºÐ°ú ÀûºÐ part1
Àü´ÞÇÔ¼öÀÇ Ç¥Çö/»óÅÂÇÔ¼öÀÇ Ç¥Çö/ÀÌ»ê ½Ã½ºÅÛ/ºí·Ï¼±µµ/Á÷·Ä¿¬°á°ú º´·Ä¿¬°á/Feedback/±ØÁ¡, ¿µÁ¡ ¼Ò°Å/°è´Ü ÀÀ´ä/ÀÓÆÞ½º ÀÀ´ä/lsim/lsim/initial/rlocus/Bode ¼±µµ/Nyquist ¼±µµ/Nychols ¼±µµ/À̵渶Áø°ú À§»ó¸¶Áø/°¡Á¦¾î¼º°ú °¡°üÃø¼º/ÇÔ¼öÀÇ ±ØÇÑ/¹ÌºÐ
Ã¥°¥ÇÇ[00:09] ¿µÁ¡°ú ±ØÁ¡ÀÇ Àü´ÞÇÔ¼ö ±¸¼º¹æ¹ý/[00:21] zp2tf ÇÔ¼ö Ȱ¿ë/[00:46] printsys ÇÔ¼ö Ȱ¿ë/[01:19] »óÅÂÇÔ¼ö(¿ª ¶óÇÁ¶ó½º º¯È¯) /[01:27] Àü´ÞÇÔ¼ö ¡æ »óÅÂÇÔ¼ö/[02:04] tf2ss ÇÔ¼ö Ȱ¿ë/[02:26] »óÅÂÇÔ¼ö ¡æ Àü´ÞÇÔ¼ö/[02:32] ss2tfÇÔ¼ö Ȱ¿ë/[03:45] ÀÌ»ê½Ã½ºÅÛ/[04:52] c2d ÇÔ¼ö/[05:32] ssÇÔ¼ö»ç¿ë (¿¬¼Ó½Ã½ºÅÛÀǰæ¿ì)/[06:25] Continuous-time state-space model/[07:01] Discrete-time state-sapce model/[07:43] d2c ÇÔ¼ö Ȱ¿ë/[08:01] ÀÌ»êÈ ¹æ¹ý (¿É¼Ç, ±â´É)/[08:51] ºí·°¼±µµ (Á¦¾î½Ã½ºÅÛ)/[09:08] Á÷·Ä ¿¬°á¿¡ µû¸¥ Àü´ÞÇÔ¼ö ±¸Çϱâ/[10:11] series ÇÔ¼ö (Á÷·Ä¿¬°áµÈ ÇÔ¼ö ÇÕÄ¡±â)/[10:29] º´·Ä ¿¬°á¿¡ µû¸¥ Àü´ÞÇÔ¼ö ±¸Çϱâ/[10:52] parallel ÇÔ¼ö (º´·Ä¿¬°áµÈ ÇÔ¼ö ÇÕÄ¡±â)/[11:17] µÇ¸ÔÀÓ (feedback)¿¡ µû¸¥ Àü´ÞÇÔ¼ö ±¸Çϱâ/[12:08] feedback ÇÔ¼ö Ȱ¿ë (µÇ¸ÔÀÓ)/[12:14] ÀüÇüÀûÀÎ feedback Á¦¾î±¸Á¶/[12:52] Àü´ÞÇÔ¼ö »ý¼º/[12:56] Á÷·Ä ¿¬°á series ÇÔ¼ö »ý¼º/[13:06] µÇ¸ÔÀÓ feedback ÇÔ¼ö »ý¼º/[15:57] ss ÇÔ¼ö Ȱ¿ë (»óÅÂÇÔ¼ö ±¸Çϱâ)/[16:10] ±ØÁ¡°ú ¿µÁ¡À» ¼Ò°Å ÈÄ ¾ò´Â ÇÔ¼ö/[17:03] °è¼ö°ª ÀÔ·Â/[17:24] minreal ÇÔ¼ö/[17:55] °è´Ü ÀÀ´ä/[17:59] ´ÜÀ§ °è´Ü ÀÀ´ä (Àü´ÞÇÔ¼ö °æ¿ì)/[18:55] ´ÜÀ§ °è´Ü ÀÀ´ä (»óÅÂÇÔ¼ö °æ¿ì)/[19:34] impulse ÇÔ¼ö/[21:08] lsim ÇÔ¼ö - ÀÓÀÇÀÇ ÀԷ¿¡ µû¸¥ ÀÀ´ä/[21:49] lsim ÇÔ¼ö ±¸Çö/[22:53] Output ÀÔ·Â/[23:03] Inuput ÀÔ·Â/[23:23] Àü´ÞÇÔ¼ö tf ÇÔ¼ö·Î »ý¼º/[23:39] »óÅÂÇÔ¼ö°¡ ÀÖÀ»¶§ Ãâ·Â°ª »ý¼º/[24:29] Ãʱâ Á¶°Ç¿¡ µû¸¥ ÀÀ´ä/[25:08] initial ÇÔ¼ö/[26:38] Àü´Þ ÇÔ¼ö¿Í »óÅ ÇÔ¼ö¸¦ ÀÌ¿ëÇÏ¿© ±Ù °è¼Óµµ ±¸Çϱâ/[26:46] rlocus »ç¿ë ¹æ¹ý/[26:53] ¿¸° ·çÇÁ¿¡ ´ëÇÑ ±Ù ±ËÀûµµ È®ÀÎ/[27:46] Çǵå¹é Á¦¾î ½Ã½ºÅÛ/[28:33] Áøµ¿ ¹®Á¦¿¡ ´ëÇÑ Á¦¾î ½Ã½ºÅÛ ºÐ¼®/[28:38] Bode ¼±µµ/[29:00] ÇÔ¼ö Bode »ç¿ë ¹æ¹ý/[29:15] Bode ¼±µµ ±×¸®±â/[29:21] Àü´Þ ÇÔ¼ö °è¼ö¿¡ ÇØ´çÇÏ´Â ºÎºÐ ÀÔ·ÂÇϱâ/[29:45] »óÅÂÇÔ¼ö°¡ ÁÖ¾îÁ³À»¶§ bode ¼±µµ ±×¸®±â/[30:37] Nyquist ÇÔ¼ö/[30:52] Nyquist ÇÔ¼ö »ç¿ë ¹æ¹ý/[31:14] Nyquist ¼±µµ ±×¸®±â/[31:44] Nychols ¼±µµ/[32:23] À̵渶Áø,À§»ó¸¶Áø,ÀÌµæ ±³Â÷ Á֯ļö,À§»ó ±³Â÷ Á֯ļö/[33:31] »óÅÂÇÔ¼ö¸¦ ÀÌ¿ëÇÏ¿© Á¦¾î ½Ã½ºÅÛ ºÐ¼®ÇÏ´Â ±â¹ý/[33:37] °¡Á¦¾î¼º°ú °¡°üÃø¼º/[33:55] ctrbÇÔ¼ö¸¦ ÀÌ¿ëÇÏ¿© °¡Á¦¾î¼º Çà·Ä ±¸Çϱâ/[34:01] obsvÇÔ¼ö¸¦ ÀÌ¿ëÇÏ¿© °¡°üÃø¼º ±¸Çϱâ/[35:21] ¹ÌºÐ°ú ÀûºÐ ±¸Çö ¹æ¹ý/[35:44] ÇÔ¼öÀÇ ±ØÇÑ/[35:52] lim ÇÔ¼öÀÇ ¿¹/[37:31] ra/[37:35] x¸¸À¸·Î ÀÌ·ç¾îÁø ÇÔ¼ö ±ØÇÑ ÃëÇϱâ/[37:41] ¸®¹ÌÆ® ÇÔ¼ö/[37:58] Àý´ë°ªÀÌ Æ÷ÇÔµÈ ÇüÅÂÀÇ ±ØÇÑ °ª ±¸Çϱâ/[38:18] ¿ì±ØÇѰú Á±ØÇÑ Ç¥Çö/[38:29] ¿ì±ØÇѰú Á±ØÇÑÀÌ ´Ù¸¥°ªÀ» °¡Áø ¿¹/[39:08] ¹ÌºÐ/[39:45] ¿¹½Ã(XÀÇ Á¦°öÀ» ¹ÌºÐÇϱâ)/[39:57] diff ÇÔ¼ö/[42:14] ÇÔ¼ö ÇüÅ ¹Ì¸® ÀúÀå ÈÄ ¹ÌºÐÇϱâ/[43:06] Æí¹ÌºÐ(2°³ ÀÌ»óÀÇ µ¶¸³º¯¼ö) -
10.56ºÐ ¹ÌºÐ°ú ÀûºÐ part2, ÇÔ¼ö
ºÎÁ¤ÀûºÐ/Á¤ÀûºÐ/¼öÄ¡ÀûºÐ/´ÙÁßÀûºÐ/Symbolic ÀûºÐ/À͸í ÇÔ¼ö/ÇÔ¼ö ÇÚµé/ÀζóÀÎ °´Ã¼/ºÎÇÔ¼ö/nargin/varargin/varargout/ÁßøÇÔ¼ö/Private function/Recursive function/MATLAB ³»Àå ¼öÇÐÇÔ¼ö
Ã¥°¥ÇÇ[00:04] ÀûºÐÀÇ Á¾·ù/[00:21] ºÎÁ¤ÀûºÐ/[00:50] ºÎÁ¤ÀûºÐÀÇ ¿¹/[01:21] Á¶±Ý ´õ º¹ÀâÇÑ ¹®Á¦/[02:01] pretty ÇÔ¼ö/[02:11] ´ÙÇ׽Ŀ¡ ´ëÇÑ ºÎÁ¤ÀûºÐ/[02:42] polyint ÇÔ¼ö/[04:06] Á¤ÀûºÐ/[04:18] Á¤ÀûºÐÀÇ ¿¹/[05:00] ÀûºÐ¹üÀ§¿¡¼ ¹«ÇÑ´ë°¡ Æ÷ÇÔµÈ °æ¿ì/[05:38] °á°ú°ªÀÌ Á¶±Ý ƯÀÌÇÑ °æ¿ì/[06:17] ¼öÄ¡ÀûºÐ/[06:37] quad, quadl ÇÔ¼ö/[07:24] quad, quald ÇÔ¼öÀÇ ¿¹/[08:40] trapz ÇÔ¼ö/[09:09] trapz ÇÔ¼öÀÇ ¿¹/[10:08] ´ÙÁßÀûºÐ/[11:01] ÀÌÁßÀûºÐÀÇ ¿¹/[13:22] X¿ÍYÀÇ ÀûºÐ ¼ø¼ ¹Ù²Ù±â/[14:39] ´Ù¸¥¹üÀ§·Î ºñ±³/[15:48] »ïÁßÀûºÐÀÇ ¿¹/[16:40] ¸ÅƲ·¦ ÇÔ¼ö¿¡ ´ëÇÑ ¿ä¾àÇ¥/[16:53] syms(½Éº¼¸¯) ÀûºÐ/[17:24] syms ÀûºÐÀÇ ¿¹/[19:01] ¸ÅƲ·¦¿¡¼ ±¸Çö/[20:51] À͸í ÇÔ¼ö/[21:05] À͸í ÇÔ¼öÀÇ ¿¹/[21:46] ÇÔ¼öÀÇ ¼ö¸íÀÌ ÀÏÁ¤ÇÏ°Ô À¯ÁöµÇ´Â °Í/[22:18] À͸í ÇÔ¼öÀÇ À籸¼º/[22:41] ÇÔ¼öÇÚµé/[23:14] ÇÔ¼öÇÚµéÀÇ ¿¹/[25:32] inline °èü/[26:45] inline °èüÀÇ ¿¹/[27:22] inline °èü³ª ¹®ÀÚÀÇ Ç¥ÇöÀ» º¤ÅÍÈ/[27:55] ºÎÇÔ¼ö/[29:14] ºÎÇÔ¼öÀÇ ¿¹/[29:30] sumcubr ÇÔ¼ö »ý¼º/[29:46] ¼¼Á¦°ö±ÙÀ» ±¸ÇÏ´Â ºÎºÐ°ú ±×°ÍµéÀ» ÇÕÄ¡´Â ºÎºÐ ÄÚµåÀÛ¼º/[31:35] ºÎÇÔ¼ö/[31:49] cuberoot ¿¡·¯/[32:38] nargin/[33:36] narginÀÇ ¿¹/[33:57] narginÀÌ 2º¸´Ù À۰ųª np°¡ ÁÖ¾îÁöÁö ¾Ê¾ÒÀ»¶§/[34:56] narginÀÌ 3º¸´Ù À۰ųª np°¡ ÁÖ¾îÁöÁö ¾Ê¾ÒÀ»¶§/[35:08] narginÀÌ 4º¸´Ù ÀÛÀ»¶§/[35:15] Ãâ·ÂÀ» ÇÏ´Â ÄÚµå»ý¼º/[35:35] exfun ÇÔ¼ö Àû¿ë/[35:43] ¿¡·¯È®ÀÎ/[35:51] ¸ðµç argument°¡ ÀÖ´Â »óŸ¦ ÁöÁ¤ÇÏ°Ô µÉ °æ¿ì/[36:16] A°¡ ÁÖ¾îÁöµÇ np°ª¸¸ ÁÖ¾îÁö°Ô µÉ °æ¿ì/[36:44] µÎ¹øÂ° argument¸¦ °øÁýÇÕÀ¸·Î ³ªÅ¸³¾ °æ¿ì/[37:12] °øÁýÇÕÀ» µÎ¹øÂ°,¼¼¹øÂ° µÎ°í ³×¹øÂ°°ª¸¸ ÁÖ¾úÀ» °æ¿ì/[37:38] ÀμöÀÇ ÇüŰ¡ °¡º¯ÀûÀÎ °æ¿ì/[37:57] mÆÄÀÏ ÀÛ¼º/[38:30] »õ ½ºÅ©¸³Æ®¸¦ ¿¾î ÇÔ¼ö mÆÄÀÏ »ý¼º/[39:51] AÇà·ÄµéÀÌ Æ÷ÇÔµÇÁö ¾ÊÀº »óÅÂ/[40:14] I´ÜÀ§ Çà·Ä/[41:20] -n ¼³¸í/[42:18] for¹®À» »ç¿ëÇÏ¿© ¸ðµç AÇà·Ä Ãß°¡/[43:19] ºí·°ÇÔ¼ö·Î ÁöÁ¤/[44:18] Ãâ·Â °ªÀÇ °³¼ö/[44:33] ¿¹¸¦ µé¾î È®ÀÎ/[45:05] for¹®À» »ç¿ëÇÏ¿© ¹Ýº¹¹® ¼³Á¤/[45:50] ù¹øÂ° ¸ð¸àÆ®¸¸ ±¸ÇϰíÀÚ ÇÒ °æ¿ì/[46:01] ¾Ë°í¸®Áò/[46:35] Ãâ·ÂÀ» ù¹øÂ°ºÎÅÍ ¼¼¹øÂ°±îÁö ¸ð¸àÆ®¸¦ ¸ðµÎ ±¸Çϱâ/[47:09] Áßø ÇÔ¼ö/[47:53] Áßø ÇÔ¼öÀÇ Ã¹¹øÂ° ¼ºÁú/[48:02] Áßø ÇÔ¼öÀÇ µÎ¹øÂ° ¼ºÁú/[48:20] Áßø ÇÔ¼öÀÇ ¿¹/[50:29] nest funÇÏ¿© 2ÀÇ °ª ±¸Çϱâ/[51:14] ºñ°ø°³ ÇÔ¼ö/[51:21] ºñ°ø°³ÇÔ¼öÀÇ À§Ä¡¿Í Ư¡/[52:56] ´ëºÎ¸§ÇÔ¼ö(Recursive function) /[53:21] ¼öÇÐ ÇÔ¼ö/[53:56] ¸ÅƲ·¦¿¡ ³»Àå µÇ¾îÀÖ´Â ¼öÇÐ ÇÔ¼öÇ¥/[53:31] °£´ÜÇÑ »ç¿ë¹ý - ¸ÅÆ®·¦ [½Ç¹«]
-
11.1½Ã°£ 5ºÐ ½ÅÈ£¿Í ½Ã½ºÅÛÀÇ °³³ä, ¿¬¼Ó ½ÅÈ£ÀÇ Ç¥Çö
½ÅÈ£ÀÇ °³³ä, ½ÅÈ£ÀÇ °èÃþÀû ºÐ·ù, ½Ã½ºÅÛÀÇ °³³ä, ½Ã½ºÅÛÀÇ ºÐ·ù, ¿¬¼Ó ½ÅÈ£ÀÇ °³³ä, ¿¬¼Ó ½Ã°£ ½ÅÈ£ÀÇ º¯È¯ ¿¬»ê, ±âº» ¿¬¼Ó ½Ã°£ ½ÅÈ£
Ã¥°¥ÇÇ[00:00] ½ÅÈ£ÀÇ °³³ä°ú Á¾·ù/[00:12] ¿¬¼Ó½ÅÈ£/[04:14] ÀÌ»ê½ÅÈ£/[07:24] ¿¡³ÊÁö ½ÅÈ£¿Í Àü·Â½ÅÈ£ÀÇ Â÷ÀÌ/[11:30] ±¸ÇüÆÄ ½ÅÈ£ ±¸Çö/[21:01] ½Ã½ºÅÛÀÇ °³³ä°ú Á¾·ù/[23:47] ¼±Çü ½Ã½ºÅÛ°ú ºñ¼±Çü ½Ã½ºÅÛ/[26:16] ½ÃºÒº¯ ½Ã½ºÅÛ, ½Ãº¯½Ã½ºÅÛ/[29:23] ±â¾ï ½Ã½ºÅÛ, ¹«±â¾ï ½Ã½ºÅÛ/[31:20] Àΰú ½Ã½ºÅÛ, ºñÀΰú ½Ã½ºÅÛ/[33:36] ¾ÈÁ¤ ½Ã½ºÅÛ, ºÒ¾ÈÁ¤ ½Ã½ºÅÛ/[35:14] ¿¬¼Ó ½ÅÈ£ÀÇ Ç¥Çö/[37:26] ¿¬¼Ó½Ã°£ Á¤ÇöÆÄ ½ÅÈ£/[43:04] Á֯ļö/[46:59] À§»ó/[49:55] Á¤ÇöÆÄ ½ÅÈ£¿Í Áö¼öÇÔ¼öÀÇ °ü°è/[54:41] Áö¼ö¿Í Á¤ÇöÆÄ ½ÅÈ£ÀÇ ±×·¡ÇÁ Ç¥Çö/[57:13] Á֯ļö ¿µÇâ È®ÀÎ/[58:31] ¿ì´ëĪ ½ÅÈ£, ±â´ëĪ ½ÅÈ£ -
12.1½Ã°£ 15ºÐ ÀÌ»ê ½ÅÈ£ÀÇ Ç¥Çö, ¿¬¼Ó ½ÅÈ£ÀÇ µðÁöÅРó¸® part1
ÀÌ»ê ½ÅÈ£ÀÇ °³³ä, ÀÌ»ê ½ÅÈ£ÀÇ º¯È¯ ¿¬»ê, ±âº» ÀÌ»ê ½ÅÈ£, ÀÌ»ê ½ÅÈ£ÀÇ ºÐ·ù, ¿¬¼Ó ½ÅÈ£ÀÇ µðÁöÅРó¸® ½Ã½ºÅÛ, »ùÇøµ, Á֯ļö Áßø, ½ÅÈ£ º¹¿ø, A, Dº¯È¯°ú D, Aº¯È¯
Ã¥°¥ÇÇ[00:00] ¿¬¼Ó½Ã°£½ÅÈ£ÀÇ ½Ã°£¿µ¿ªÇ¥Çö°ú Á֯ļö¿µ¿ªÇ¥Çö/[03:54] cos ½ÅÈ£ÀÇ ½ºÆåÆ®·³ »ý¼º/[04:56] »ç°¢ÆÄ ½ÅÈ£ÀÇ ½ºÆåÆ®·³ »ý¼º/[07:01] ¿¬¼Ó½Ã°£½ÅÈ£ÀÇ º¯È¯ ¿¬»ê/[08:58] ½Ã°£ ÀüÀÌ ¿¬»ê/[10:38] ½Ã°£ ¹ÝÀü ¿¬»ê/[12:27] ½Ã°£ ôµµ Á¶Àý ¿¬»ê/[15:05] ±âº» ¿¬¼Ó½Ã°£½ÅÈ£/[17:22] ´ÜÀ§ ÀÓÆÞ½º ÇÔ¼ö/[21:21] üÁú ¼ºÁú°ú Ç¥º»È ¼ºÁúÀÇ Â÷ÀÌÁ¡/[23:25] ÀÌ»ê ½ÅÈ£/[25:52] ÀÌ»ê ½ÅÈ£ÀÇ Ç¥Çö°ú µðÁöÅÐ ½ÅÈ£ÀÇ »ý¼º/[27:16] µðÁöÅÐ ½ÅÈ£ »ý¼º °úÁ¤/[29:39] ´ëĪ ½ÅÈ£¿Í ¹Ý´ëĪ ½ÅÈ£/[32:50] ÀÌ»ê ½ÅÈ£ÀÇ º¯È¯ ¿¬»ê(ÀüÀÌ ¿¬»ê)/[35:18] ÀÌ»ê ½ÅÈ£ÀÇ º¯È¯ ¿¬»ê(¹ÝÀü ¿¬»ê)/[38:13] ½Ã°£Ã´µµÁ¶Àý¿¬»ê/[48:10] ÀÌ»ê ½ÌÅ© ÇÔ¼öÀÇ ±×·¡ÇÁ »ý¼º/[51:52] ÀÌ»ê ½ÅÈ£ÀÇ ºÐ·ù/[57:11] ¿¡³ÊÁö ½ÅÈ£¿Í Àü·Â ½ÅÈ£/[58:52] ¿¡³ÊÁö/Àü·Â ½ÅÈ£ ÆÇº°/[01:03:16] ¿¬¼Ó ½ÅÈ£ÀÇ µðÁöÅРó¸®/[01:13:10] A/D º¯È¯±â »ùÇøµ/[01:14:17] Á¤ÇöÆÄ ½ÅÈ£ »ùÇøµ -
13.1½Ã°£ 12ºÐ ¿¬¼Ó ½ÅÈ£ÀÇ µðÁöÅРó¸® part2
Á¤ÇöÆÄ ½ÅÈ£ÀÇ »ùÇøµ, ÀÌ»ê Á¤ÇöÆÄ ½ÅÈ£ÀÇ ½ºÆåÆ®·³, ÀÓÆÞ½º »ùÇøµ ¸ðµ¨°ú »ùÇøµ, Á֯ļö Áßø, ÀÌ»óÀûÀÎ ½ÅÈ£ º¹¿ø, ¿µÂ÷ Ȧµå¸¦ ÀÌ¿ëÇÑ ½ÅÈ£ º¹¿ø
Ã¥°¥ÇÇ[00:00] ¿¬¼Ó½ÅÈ£ ÀÌ»êÈÇÏ´Â ¹æ¹ý/[08:37] ¿¤¸®¾î½º »ùÇøµ ±×¸² º¸±â/[19:56] »ùÇøµ Á֯ļö¿¡ µû¸¥ ÀÌ»ê Á¤ÇöÆÄ ½ÅÈ£ÀÇ ½ºÆåÆ®·³/[20:22] ¸ÞÀÎ ÄÚµå ÀÛ¼º/[23:52] »ùÇøµ µÈ ½ÅÈ£ÀÇ Á֯ļö ½ºÆåÆ®·³ Ç¥½Ã/[38:27] ¸ÞÀÎ ÄÚµå ÀÛ¼º/[42:10] »ùÇøµ µ¿ÀÛÀÇ ¼öÇÐÀû ºÐ¼®(ÀÓÆÞ½º »ùÇøµ ¸ðµ¨)/[50:30] Ǫ¸®¿¡ ±Þ¼ö¿Í Ǫ¸®¿¡ º¯È¯/[55:02] »ùÇøµ ¹× º¹¿ø ½Ã½ºÅÛ/[01:00:27] Á֯ļö Áßø/[01:07:02] ¿©·¯°¡Áö ½ÅÈ£ º¹¿ø ¹æ¹ý/[01:09:25] ¿µÂ÷ Ȧµå -
14.1½Ã°£ 8ºÐ ¿¬¼Ó ½ÅÈ£ÀÇ µðÁöÅРó¸® part3, ÀÌ»ê ½Ã½ºÅÛÀÇ ½Ã°£ ¿µ¿ª ÇØ¼® part1
¿µÂ÷ Ȧµå¸¦ ÀÌ¿ëÇÑ ½ÅÈ£ º¹¿ø, ¼±Çü º¸°£(ÀÏÂ÷ Ȧµå)À» ÀÌ¿ëÇÑ ½ÅÈ£ º¹¿ø, A/Dº¯È¯°ú D/Aº¯È¯, ¾çÀÚÈ, ºÎÈ£È, ¾çÀÚÈ ¿ÀÂ÷, ½Ã½ºÅÛÀÇ ÀÓÆÞ½º ÀÀ´ä, ÀÌ»ê LTI ½Ã½ºÅÛÀÇ ÄÁ¹ú·ç¼Ç Ç¥Çö, ÄÁ¹ú·ç¼Ç ÇÕÀÇ °è»ê°ú ¼ºÁú, ÄÁ¹ú·ç¼Ç ÇÕÀÇ °è»ê
Ã¥°¥ÇÇ[00:00] ¿µÂ÷ ȦµåÀÇ Á֯ļö ÀÀ´ä/[01:19] ÀÏÂ÷ Ȧµå¸¦ ÀÌ¿ëÇÑ ½ÅÈ£ º¹¿ø/[04:35] ¿µÂ÷ Ȧµå¸¦ ÀÌ¿ëÇÑ »ùÇøµ µÈ ½ÅÈ£ º¹¿ø/[10:40] ¸ÞÀÎ ÄÚµå ÀÛ¼º/[13:25] ÀÏÂ÷ Ȧµå¸¦ ÀÌ¿ëÇÑ »ùÇøµ µÈ ½ÅÈ£ º¹¿ø/[19:19] ¸ÞÀÎ ÄÚµå ÀÛ¼º/[21:22] ¾çÀÚÈ¿Í ºÎÈ£È/[24:23] ¹ö¸²°ú ¹Ý¿Ã¸²ÀÇ ¿ÀÂ÷ ¹üÀ§/[25:58] ½ÅÈ£¿Í ÀâÀ½ºñ/[27:02] ¾çÀÚÈ ¹× ¾çÀÚÈ ÀâÀ½ÀÇ SNR/[36:48] ÀÌ»ê ½Ã½ºÅÛÀÇ ½Ã°£ ¿µ¿ª ÇØ¼®/[38:36] ½Ã½ºÅÛÀÇ ÀÓÆÞ½º ÀÀ´ä/[39:04] °íÀ¯ ÀÀ´ä, °Á¦ ÀÀ´ä, ¿µÀÔ·Â ÀÀ´ä, ¿µ»óÅ ÀÀ´ä, ÀÓÆÞ½º ÀÀ´ä/[41:53] ÀÓÆÞ½º ÀÀ´äÀ» ÀÌ¿ëÇÑ ¿µ»óÅ ÀÀ´ä ±¸Çϱâ/[42:59] °¡»ê¼º°ú µ¿Â÷¼ºÀÇ °³³ä/[46:40] ÄÁ¹ú·ç¼Ç ÇÕ Ç¥Çö/[52:04] ¹Ì²ô·³ ¹æ½Ä¿¡ ÀÇÇÑ ÄÁ¹ú·ç¼Ç °è»ê ¾Ë°í¸®Áò/[54:28] ÀÔ·Â ½ÅÈ£, ÀÓÆÞ½º ÀÀ´äÀÇ ÇüÅ -
15.1½Ã°£ 10ºÐ ÀÌ»ê ½Ã½ºÅÛÀÇ ½Ã°£ ¿µ¿ª ÇØ¼® part2
ÄÁ¹ú·ç¼Ç ÇÕÀÇ °è»ê°ú ¼ºÁú, Â÷ºÐ ¹æÁ¤½Ä¿¡ ÀÇÇÑ ÀÌ»ê LTI ½Ã½ºÅÛÀÇ ÇØ¼®, Â÷ºÐ ¹æÁ¤½Ä¿¡ ÀÇÇÑ ÀÌ»ê LTI ½Ã½ºÅÛÀÇ ÇØ¼®, Â÷ºÐ ¹æÁ¤½ÄÀÇ Ç®ÀÌ, ÀÓÆÞ½º ÀÀ´ä°ú ½Ã½ºÅÛÀÇ Æ¯¼º
Ã¥°¥ÇÇ[00:00] ±³È¯¹ýÄ¢/[01:25] °áÇÕ¹ýÄ¢/[01:59] ºÐ¹è¹ýÄ¢/[02:25] À̵¿¼ºÁú/[05:37] ½ÅÈ£¿¡ ´ëÇÑ ÄÁ¹ú·ç¼Ç ¿¬»ê ½Ç½À/[13:20] Ãâ·Â½ÅÈ£ ¹üÀ§ º¸±â/[15:04] ÄÚµå ±¸Çö º¸±â/[19:44] ¹Ì²ô·³ ¹æ½ÄÀÇ ÄÁ¹ú·ç¼Ç °á°ú¿Í ºñ±³/[22:06] Â÷ºÐ ¹æÁ¤½Ä¿¡ ÀÇÇÑ ÀÌ»ê LTI ½Ã½ºÅÛÀÇ ÇØ¼®/[29:10] ¹Ýº¹ ´ëÀÔ¹ý¿¡ ÀÇÇÑ Â÷ºÐ ¹æÁ¤½Ä Ç®ÀÌ/[35:08] ¼·Î ´Ù¸¥ Ư¼º±Ù, Áß±ÙÀÇ Æ¯¼º±Ù/[36:08] Â÷ºÐ¹æÁ¤½ÄÀÇ µ¿Â÷ÇØ ±¸Çϱâ/[39:52] ƯÀÌÇØ/[42:39] ¿ÏÀüÇØ(À¯ÀÏÇØ)/[49:57] ¿µÀÔ·Â ÀÀ´ä°ú ¿µ»óÅ ÀÀ´ä/[53:30] Â÷ºÐ ¹æÁ¤½ÄÀÇ °íÀüÀû ÇØ¹ý Á¤¸®/[58:04] ÀÓÆÞ½º ÀÀ´äÀÇ ¹°¸®Àû ÀǹÌ/[01:01:47] Àΰú¼º°ú ¾ÈÁ¤¼ºÀÇ °ü°è/[01:05:13] ¹Ýº¹ ´ëÀÔ¹ý¿¡ ÀÇÇÑ Â÷ºÐ ¹æÁ¤½Ä Ç®ÀÌ ÇÔ¼ö -
16.1½Ã°£ 10ºÐ ÀÌ»ê ½Ã½ºÅÛÀÇ ½Ã°£ ¿µ¿ª ÇØ¼® part3, Á֯ļö ¿µ¿ª ÇØ¼®ÀÇ ±âÃÊ part1
ÀÓÆÞ½º ÀÀ´ä°ú ½Ã½ºÅÛÀÇ Æ¯¼º, Â÷ºÐ ¹æÁ¤½ÄÀÇ ÇØ, ½ÅÈ£ÀÇ Ç¥Çö°ú Á֯ļö, Ǫ¸®¿¡ ±Þ¼ö, ½ºÆåÆ®·³, Ǫ¸®¿¡ ±Þ¼ö, ½ºÆåÆ®·³, ÁøÆø ½ºÆåÆ®·³ÀÇ ¿ªÇÒ, À§»ó ½ºÆåÆ®·³ÀÇ ¿ªÇÒ, Ǫ¸®¿¡ º¯È¯, Ǫ¸®¿¡ º¯È¯ÀÇ ¼ºÁú
Ã¥°¥ÇÇ[00:00] ¹Ýº¹ ´ëÀÔ¹ý¿¡ ÀÇÇÑ Â÷ºÐ ¹æÁ¤½Ä Ç®ÀÌ ÇÔ¼ö/[05:53] ¸ÞÀÎ ÄÚµå ÀÛ¼º/[11:21] °íÀ¯ÀÀ´ä°ú °Á¦ÀÀ´äÀÇ ÇüÅ·Π³ªÅ¸³»±â/[16:33] ÇÊÅÍ¿¡ ÀÇÇÑ ÀâÀ½ ¼Ò°Å/[21:54] ÁֱⰡ °°Áö¸¸ ¼·Î ´Ù¸¥ »çÀÎÆÄ/[26:10] ±âÀú (±âº»½ÅÈ£)/[32:27] Dirichlet Á¶°Ç/[32:48] Á֯ļö ºÐÇØ °úÁ¤, Á֯ļö ÇÕ¼º °úÁ¤/[34:10] ÁõÆø ½ºÆåÆ®·³ÀÇ ¿ªÇÒ/[36:15] Á֯ļö ÇÕ¼º¿¡ ÀÇÇÑ »ç°¢ ÆÞ½º ½ÅÈ£ÀÇ ±Ù»çÈ/[41:18] À§»ó ½ºÆåÆ®·³ÀÇ ¿ªÇÒ/[41:44] ½ÅÈ£ ÆÄÇü¿¡ ´ëÇÑ À§»ó ½ºÆåÆ®·³ÀÇ ¿ªÇâ/[47:00] Ǫ¸®¿¡ ±Þ¼ö °³³ä È®Àå/[52:39] Ǫ¸®¿¡ º¯È¯ÀÇ ¼ö·Å Á¶°Ç/[53:56] Ǫ¸®¿¡ º¯È¯ÀÇ ¼ºÁú/[1:02:06] Ǫ¸®¿¡ °è¼ö¸¦ ÀÌ¿ëÇÑ ½ºÆåÆ®·³ °è»ê -
17.1½Ã°£ 12ºÐ Á֯ļö ¿µ¿ª ÇØ¼®ÀÇ ±âÃÊ part2, ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö ¹× º¯È¯ part1
°¢ ÆÞ½º Áֱ⠽ÅÈ£ ÀԷ¿¡ ´ëÇÑ RC º´·Äȸ·ÎÀÇ Ãâ·Â/Ǫ¸®¿¡ º¯È¯À» ÀÌ¿ëÇÑ ÄÁ¹ú·ç¼Ç °è»ê/ÁøÆø º¯Á¶/ÀÌ»ê Á¤ÇöÆÄ ½ÅÈ£ÀÇ Áֱ⼺/ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö
Ã¥°¥ÇÇ[00:12] fft·Î ½ºÆåÆ®·³ °è»ê/[00:38] ÁøÆø ½ºÆåÆ®·³ ±×¸²/[00:54] À§»ó ½ºÆåÆ®·³ ±×¸²/[00:58] ÄÚµå ½ÇÇà/[02:50] ½ºÆåÆ®·³À¸·ÎºÎÅÍÀÇ Á¶ÆÄ ÇÕ¼º/[03:52] Á÷·ù ¼ººÐÀÇ Çª¸®¿¡ °è¼ö ÀÔ·Â/[04:13] ÇÕ¼º ½ÅÈ£ÀÇ Á÷·ù ¼ººÐ ÀÔ·Â/[04:21] 20 °íÁ¶ÆÄ ÇÕ¼º ±×·¡ÇÁ º¸±â/[04:54] »ç°¢ÆÞ½º ÁÖ±â½ÅÈ£ÀÇ Ç×ÁÖ±âÆÄÇü ±¸Çϱâ/[05:32] ÀúÇ×°ú Á¤Àü ¿ë·®¿¡ µû¸¥ ȸ·ÎÀÇ Á֯ļö ÀÀ´ä/[06:12] rcȸ·ÎÀÇ Á֯ļö ÀÀ´ä ÄÚµå ÀÛ¼º/[07:07] R°ú C°ª ¼³Á¤/[09:47] ÀÔ·Â ÈÄ rcȸ·Î Ãâ·Â¿¡ ´ëÇÑ ÁøÆø, ½ºÆåÆ®·³ ±×¸®±â/[10:22] ÀԷ Ǫ¸®¿¡ °è¼ö Á÷·ù Ç× °ª ¼³Á¤/[10:30] Ãâ·ÂÀÇ ½ºÆåÆ®·³ °è»ê/[11:10] Á÷·ùÇ× Æ÷ÇÔÇÑ Ãâ·Â ½ºÆåÆ®·³ »ý¼º/[11:36] ÄÚµå ½ÇÇà °á°ú/[12:25] rcȸ·Î Ãâ·Â ÆÄÇü ±¸Çϱâ /[13:01] R°ú C°ª ¼³Á¤/[13:08] °íÁ¶ÆÄÀÇ Â÷¼ö¸¦ ¼±ÅÃ/[13:26] Ãâ·ÂÀÇ Á÷·ù ¼ººÐ °è»ê/[16:41] Ǫ¸®¿¡ º¯È¯À» ÀÌ¿ëÇÑ ÄÁº¼·ç¼Ç °è»ê/[17:11] µ¥ÀÌÅÍ ¼ö ¼³Á¤/[17:39] ½Ã°£Ãà ¼³Á¤/[17:56] »ç°¢ ÆÞ½º ½ÅÈ£ »ý¼º/[18:21] ½Ã°£ ¿µ¿ª ÄÁ¹ú·ç¼Ç ¼öÇà/[19:05] ÄÁº¼·ç¼Ç¿¡¼ Ǫ¸®¿¡ º¯È¯ÀÇ Æ¯Â¡/[19:49] Ǫ¸®¿¡ º¯È¯ ¼öÇà/[21:24] ÄÁº¼·ç¼Ç °á°ú ±×¸²/[22:10] DSB-SC/[22:33] º¯Á¶½ÅÈ£/[23:13] DSB-LC/[24:36] DSB-SC ¹æ½ÄÀ» ÀÌ¿ëÇÑ ÁøÆø º¯Á¶ ¹× º¯Á¶ ½ÅÈ£ ½ºÆåÆ®·³ °è»ê/[25:31] ½Ã°£Ãà »ý¼º/[26:08] Á֯ļö ÇØ»óµµ ¼³Á¤/[26:54] ¸Þ½ÃÁö ½ÅÈ£ »ý¼º/[27:42] º¯Á¶ ½ÅÈ£ ½ºÆåÆ®·³ °è»ê/[28:25] ¸Þ½ÃÁö ½ÅÈ£¿Í ¹Ý¼ÛÆÄ ±×¸²/[29:50] º¯Á¶ ½ÅÈ£ÀÇ ½ºÆåÆ®·³ ±×¸²/[31:21] º¹Á¶(º¹¿ø)/[32:32] º¹Á¶ ½ÅÈ£ »ý¼º/[32:55] º¹Á¶ ½ÅÈ£¿Í ¸Þ¼¼Áö ½ÅÈ£¸¦ ±×¸²/[33:05] º¯Á¶ ½ÅÈ£ÀÇ ÁøÆø ½ºÆäÆ®·³ ±×¸²/[33:44] Àú¿ªÅë°úÇÊÅÍ/[33:55] DSB-SC ¹æ½ÄÀÇ º¯Á¶ ½ÅÈ£¿¡ ´ëÇÑ º¹Á¶/[35:07] ¹Ý¼ÛÆÄ »ý¼º/[35:16] º¯Á¶ ½ÅÈ£ »ý¼º/[35:42] º¯Á¶ ½ÅÈ£ ½ºÆåÆ®·³ °è»ê/[36:03] º¯Á¶ ¹Î°¨µµ Áö¼ö/[37:14] ºÎÁ· º¯Á¶/[38:02] º¯Á¶½ÅÈ£¸¦ ´Ù½Ã º¹Á¶ ½ÅÈ£·Î ¹Ù²Ù±â/[38:56] ºÐ¹è ¹ýÄ¢À¸·Î Àü°³Çϱâ/[39:53] ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö¿Í º¯È¯/[40:24] ÀÌ»ê Á¤ÇöÆÄ ½ÅÈ£ÀÇ Áֱ⼺/[40:58] ÀÌ»ê Á¤ÇöÆÄ¿Í ¿¬¼Ó Á¤ÇöÆÄÀÇ Â÷ÀÌ/[43:54] ¿ÀÀÏ·¯ °ø½ÄÀ¸·Î Ç®¾î¾´ °á°ú º¸±â/[45:39] Á֯ļö ¿À¸Þ°¡0+2¥ð º¹¼Ò Á¤ÇöÆÄ ¼ö½Ä º¸±â/[46:36] ¸ðµç ÀÌ»ê º¹¼Ò Á¤ÇöÆÄ ½ÅÈ£ ³ªÅ¸³¾ °æ¿ì/[47:12] ÀÌ»ê Á¤ÇöÆÄÀÇ ÃÖ´ë Á֯ļö ±¸Çϱâ/[48:17] ÁֱⰡ µÎ°³ÀÎ °æ¿ì/[48:27] ½Ã°£Ãà ¹üÀ§ ÁöÁ¤/[48:43] ÀÌ»ê ½ÅÈ£ ÁÖ±â ÁöÁ¤/[48:51] ¿¬¼Ó ½ÅÈ£ ÇüÅ ÀÔ·Â/[49:11] ÀÌ»ê ½ÅÈ£¿Í ¿¬¼Ó ½ÅÈ£ ÇѲ¨¹ø¿¡ Ç¥Çö/[49:19] for ¹Ýº¹¹®À¸·Î °£°Ý ÁöÁ¤/[50:06] ´Ù¸¥ ¹æ½Ä ÀÌ¿ë/[51:16] ±×·¡ÇÁ Ç¥Çö/[52:13] ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö/[53:23] ÀÌ»ê NÁֱ⠱⺻ Á֯ļö/[53:46] 2¥ð-Áֱ⼺/[55:17] ÀÌ»ê Ǫ¸®¿¡ ±Þ¼ö(ÇÕ¼º½Ä)/[57:03] ½Ã±×¸¶¿¡ ´ëÇÑ ºÎºÐ º¯°æ/[59:02] ÀÌ»ê Ǫ¸®¿¡ °è¼ö(ºÐ¼®½Ä)/[59:26] ÀÌ»ê Ǫ¸®¿¡ °è¼öÀÇ ±ØÁÂÇ¥ Çü½Ä/[01:00:02] ÀÌ»ê Ǫ¸®¿¡ °è¼ö°¡ ÁÖ±â nÀÎ ÁÖ±â ÇÔ¼ö°¡ µÇ´Â °úÁ¤/[01:05:39] ÀÌ»ê Áֱ⠽ÅÈ£ÀÇ Çª¸®¿¡ ±Þ¼ö¿Í ½ºÆåÆ®·³¿¡ ´ëÇØ ¾Ë¾Æº¸±â/[01:07:40] n=-3ºÎÅÍ 2±îÁöÀÇ °ª ±¸Çϱâ/[01:08:26] nÀÌ 0ÀÎ °æ¿ì/[01:08:34] nÀÌ 1ÀÎ °æ¿ì/[01:09:36] 6°³ÀÇ Çª¸®¿¡ °è¼ö ±¸Çϱâ/[01:10:55] °è¼ö¸¦ Áö¼ÓÀûÀ¸·Î ³ª¿ÇÒ °æ¿ì/[01:11:00] ÁøÆø ½ºÆåÆ®·³ ±×·¡ÇÁ º¸±â/[01:11:10] ¹Ý´ë·Î ÁÖ±â½ÅÈ£ ÇÕ¼ºÇϱâ -
18.1½Ã°£ 8ºÐ ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö ¹× º¯È¯ part2
ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö(DTFS)/ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯(DTFT)/ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯(DTFT)/ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯ÀÇ ¼ºÁú/ÀÌ»ê ½ÅÈ£ÀÇ Çª¸®¿¡ ÇØ¼®/DTFTÀÇ ´ëμº°ú Á֯ļö À̵¿ ¼ºÁú
Ã¥°¥ÇÇ[00:58] N±¸°£À» -3ºÎÅÍ 2±îÁö ÇÑ °æ¿ì/[01:23] ±Þ¼ö¿¡ ´ëÇÑ ¼ºÁú/[01:46] Áֱ⼺/[02:00] ¼±Çü¼º/[02:21] º¹¼Ò ´ëĪ/[03:13] À§»ó º¯È/[03:27] m-m=d ġȯ/[04:32] ½Ã°£ ÄÁ¹ú·ç¼Ç/[05:19] Á֯ļö ÄÁ¹ú·ç¼Ç/[05:59] ÆÄ½º¹ßÀÇ Á¤¸®/[06:20] ½Ã°£ À̵¿ ¼ºÁú ¿¹Á¦/[06:29] Ǫ¸®¿¡ °è¼ö Ç¥Çö/[07:03] ÀÓÆÞ½º ÇÔ¼öÀÇ Çª¸®¿¡ °è¼ö/[07:18] ÀÓÆÞ½º ¿ÀÌ n0 ½Ã°£ Áö¿¬ µÉ ¶§ Ǫ¸®¿¡ °è¼ö/[07:51] ½Ä ºñ±³/[10:14] ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯(Æ÷¶ô¼± ÇÔ¼ö)/[10:40] xnÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö Ç¥Çö/[11:30] ¿ª ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯/[14:01] ±ØÁÂÇ¥ ÇüÅÂ/[15:43] ÁÖ¿ä ½ÅÈ£ÀÇ ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯ ½Ö/[15:54] ÀÓÆÞ½º ½ÅÈ£ DTFT½Ö/[16:41] Á÷·ù ½ÅÈ£ DTFT½Ö/[18:17] ÀÌ»ê »ç°¢ÆÄ ÇÔ¼öÀÇ ½ºÆåÆ®·³ Ãâ·Â/[21:53] ½ÅÈ£¿¡ ´ëÇÑ Çª¸®¿¡ º¯È¯ÇÑ °ø¾×´ëĪ °ª/[21:59] X¿À¸Þ°¡ÀÇ Á÷±³ÁÂÇ¥·Î ³ªÅ¸³½ °æ¿ì/[22:05] re ÆÄÆ®/[22:25] Im ÆÄÆ®/[23:29] ±ØÁÂÇ¥·Î Ç¥Çö/[24:35] xnÀº ½Ç¼ö, ¿ìÇÔ¼öÀÎ °æ¿ì/[26:47] ±âÇÔ¼ö·Î È®Àå/[26:59] ½Ã°£ À̵¿ ¼ºÁú/[27:09] Áõ¸í/[30:01] Á֯ļö À̵¿ ¼ºÁú/[34:04] ½Ã°£ ÄÁ¹ú·ç¼Ç/[35:24] Á֯ļö ÄÁ¹ú·ç¼Ç(â ¾º¿ì±â Á¤¸®)/[37:07] ÆÄ½º¹ßÀÇ Á¤¸®/[38:45] °ø¾×´ëĪ µÈ ½ÅÈ£¿¡ ´ëÇÑ Çª¸®¿¡ ¿ªº¯È¯ ½Ä/[39:51] °ø¾× ´ëĪÀÇ °á°ú/[40:08] ½Ã°£ Á֯ļö ½Ö´ë¼º/[41:05] ¿¹Á¦ ±×·¡ÇÁ º¸±â/[41:35] Áֱ⠽ÅÈ£¿¡ ´ëÇÑ Çª¸®¿¡±Þ¼ö °è¼ö ±¸Çϱâ/[42:02] ÄÚµå ÀÛ¼º/[42:04] ¾Ë°í¸®Áò ºÎºÐ º¸±â/[42:30] ½Ã°£ ±¸°£ ¼³Á¤/[42:51] º¹¼Ò Á¤ÇöÆÄ »ý¼º/[43:03] °è¼ö ±¸Çϱâ/[46:07] Ǫ¸®¿¡ °è¼ö °è»ê °á°ú Ç¥½Ã/[46:20] ±×·¡ÇÁ Ç¥Çö/[46:29] ÁøÆø, À§»ó ½ºÆåÆ®·³ º¸±â/[47:02] ¸ÅÆ®·¦ âÀ¸·Î °ª È®ÀÎ/[48:03] ÀÌ»ê ½ÅÈ£ÀÇǪ¸®¿¡ ÇØ¼®/[48:13] Á֯ļö ÇØ»óµµ ¼³Á¤/[48:22] Á֯ļöÃà »ý¼º/[48:46] Áֱ⠽ÅÈ£¸¦ ºñÁֱ⠽ÅÈ£·Î ¸¸µé±â/[49:05] µ¥ÀÌÅÍ ÀçÁ¤·Ä/[49:37] fft ½ÇÇà ¹× ÀçÁ¤·Ä/[50:03] ¿ª º¯È¯ ¼öÇà/[50:10] µ¥ÀÌÅÍ ÀçÁ¤·Ä/[50:39] ½Ã°£Ãà »ý¼º/[51:10] ÄÚµå ½ÇÇà/[51:33] ºñÁֱ⠽ÅÈ£ º¸±â/[51:50] DTFTÀÇ ´ëμº°ú Á֯ļö À̵¿¼ºÁú¿¡ ´ëÇÑ ½Ç½À/[52:08] Ǫ¸®¿¡ ½ºÆåÆ®·³ÀÇ ½Ç¼öºÎ¿Í Çã¼öºÎ ±¸Çϱâ/[52:25] Á֯ļöÃà ¼³Á¤/[52:33] xn¿¡ ´ëÇÑ Çª¸®¿¡ º¯È¯ °è»ê/[54:18] Çà·ÄÀÇ °ö/[57:34] (omega)ÀÇ ½Ç¼öºÎ ÁöÁ¤/[57:49] (omega)ÀÇ Çã¼öºÎ ÁöÁ¤/[58:14] ½Ç¼öºÎ ½ºÆåÆ®·³ ±×¸®±â/[58:47] Çã¼öºÎ ½ºÆåÆ®·³ ±×¸®±â/[59:32] ¿ìÇÔ¼ö¿Í ±âÇÔ¼ö¿¡ ´ëÇÑ Çª¸®¿¡ º¯È¯/[01:01:55] ½ÅÈ£ ¹ÝÀüÀ» À§ÇÑ ½Ã°£Ãà m ¼³Á¤/[01:02:22] mÃà¿¡¼ÀÇ x°ª °¡Á®¿À±â/[01:03:39] ¿ìÇÔ¼ö ¼ººÐ °è»ê/[01:04:53] ±âÇÔ¼ö ¼ººÐ °è»ê/[01:05:37] ÄÚµå ½ÇÇà/[01:06:00] Á֯ļö À̵¿ ¼ºÁú/[01:07:27] ±×·¡ÇÁ ±×¸®±â -
19.1½Ã°£ 1ºÐ ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ ±Þ¼ö ¹× º¯È¯ part3, ¶óÇÃ¶ó½º º¯È¯°ú Z º¯È¯
DTFT¿¡ ÀÇÇÑ ÀÌ»ê ½Ã½ºÅÛÀÇ ÇØ¼®/ÀÌ»ê ½Ã½ºÅÛÀÇ Á֯ļö ÀÀ´ä/Â÷ºÐ ¹æÁ¤½Ä°ú Á֯ļö ÀÀ´ä/Ǫ¸®¿¡ Ç¥ÇöÀÇ »óÈ£ °ü°è/Ǫ¸®¿¡ Ç¥ÇöÀÇ °ü°è ¿ä¾à/´Ü¹æÇâ ¶óÇÃ¶ó½º º¯È¯/s¿µ¿ªÀÇ ¹ÌºÐ/½Ã°£ ¿µ¿ªÀÇ ¹ÌºÐ/ÄÁ¹ú·ç¼Ç ¼ºÁú/zº¯È¯ÀÇ ¼ö·Å ¿µ¿ª/°è´Ü ½ÅÈ£/·¥ÇÁ ½ÅÈ£/ÀÓÆÞ½º ½ÅÈ£/Áö¼ö ½ÅÈ£
Ã¥°¥ÇÇ[00:00] ÀÌ»ê ½Ã°£ Ǫ¸®¿¡ º¯È¯¿¡ ÀÇÇÑ ÀÌ»ê ½Ã½ºÅÛÀÇ ÇØ¼®/[03:47] ÀÓÆÞ½º ÀÀ´ä°ú Á֯ļö ÀÀ´ä/[08:00] ½Ã±×¸¶ ÇüÅÂ/[15:15] Â÷ºÐ¹æÁ¤½Ä/[21:49] Hn=dimpulse/[28:18] Ǫ¸®¿¡ ½ºÅØÆ®·³/[33:50] ¶óÇöó½ºÀÇ º¯È¯°ú zº¯È¯¿¡ ´ëÇØ ¾Ë¾Æº¸±â/[37:30] ¶óÇÃ¶ó½º º¯È¯ Àû¿ë/[40:55] ½ÅÈ£ÀÇ ¶óÇÃ¶ó½º º¯È¯ ROC/[44:31] ½Ã°£ ¿µ¿ª¿¡¼ÀÇ ¹ÌºÐ Ư¼º/[49:03] ÄÁ¹ú·ç¼Ç ¼ºÁú/[54:09] 2Â÷¹ÌºÐ¹æÀû½ÄÀÇ ÇØ¸¦ ±¸Çϱâ -
20.59ºÐ zº¯È¯°ú µðÁöÅÐ ÇÊÅÍ
Àü´Þ ÇÔ¼ö/½Ã½ºÅÛÀÇ ±Ø°ú ¿µÁ¡/µðÁöÅÐ ÇÊÅÍÀÇ °³³ä/ÇÊÅÍÀÇ ºÐ·ù/ÇÊÅÍÀÇ ¿ë¾î/±Ø-¿µÁ¡ ¹èÄ¡¿Í ÇÊÅÍ Æ¯¼º/À̵¿ Æò±Õ ÇÊÅÍ/ÇÊÅÍÀÇ »ç¾ç/ÇÊÅÍ °è¼ö/ÇÊÅÍ ±¸Á¶/ÇÊÅÍÀÇ ¹°¸®Àû ±¸Çö
Ã¥°¥ÇÇ[04:28] Àü´ÞÇÔ¼öÀÇ Æ¯¼º ¹æÁ¤½Ä/[09:31] Zplane/[13:41] Freqz/[17:37] ½Ã°£Ãà ¼³Á¤/[21:40] Syms/[24:11] ±ØÁ¡°ú ¿µÁ¡¿¡ µû¸¥ ½Ã½ºÅÛ Æ¯¼º º¯È¯/[30:36] µðÁöÅÐ ÇÊÅÍ ¼³°è/[35:17] Ãë±Þ ½ÅÈ£¿¡ µû¸¥ ºÐ·ù/[35:56] Á֯ļö ¼±Åà Ư¼º¿¡ µû¸¥ ºÐ·ù/[36:04] Â÷ºÐ ¹æÁ¤½Ä ÇüÅ¿¡ µû¸¥ ºÐ·ù/[37:16] ÀÓÆÞ½º ÀÀ´äÀÇ ÇüÅ¿¡ µû¸¥ ºÐ·ù/[43:24] ½Ç¿ë ÇÊÅÍ/[47:19] °è¼ö ¼³Á¤/[54:42] À̵¿ Æò±Õ ÇÊÅÍ