ITºÎºÐ Àΰ­1À§
±â¾÷±³À°
HOME>ITÀü¹®°¡>À¥ ÇÁ·Î±×·¡¹Ö class2>»çÀÌŶ·± [¸Ó½Å·¯´×]
  • »çÀÌŶ·± [¸Ó½Å·¯´×]

  • °­ÀDZ¸¼º
  • (20°­) Àüü : 13½Ã°£ 1ºÐ|Æò±Õ : 39ºÐ2ÃÊ
  • ÀÌ¿ë±â°£ / °­»ç
  • 2°³¿ù / ¾ËÁö¿À R&D [IT]
  • Áõºù°¡´É
  • ¼ö·áÁõ, ¼ö°­Áõ, ÇнÀÁøµµ
  • ¼ö°­·á
  • 450,000¿ø
  • 225,000¿ø
  • ¾ËÁö¿À ÆÐŰÁö
  • "5°³¿ù" ÇýÅÃ!

¼ö°­ Àü ÀÚÁÖ ¹¯´Â Áú¹®

±³Àç ¾øÀÌ? Ãʺ¸ÀÚµµ °¡´É ÇѰ¡¿ä?

±³Àç ¾øÀ̵µ µ¿¿µ»ó°ú ½Ç½À ÀڷḸÀ¸·Î ÇнÀÇÒ ¼ö ÀÖÀ¸¸ç, Ãʺ¸ÀÚµµ ÀÌÇØÇÏ°í µû¶ó¿Ã ¼ö ÀÖµµ·Ï ¼³°èµÈ °­ÀÇÀÔ´Ï´Ù.

¾ËÁö¿ÀÀÇ °­ÀÇÆ¯Â¡Àº ¹«¾ùÀΰ¡¿ä?

¾ËÁö¿À °­ÀÇ´Â ´Ü¼ø ÃÔ¿µº»ÀÌ ¾Æ´Ï¶ó, Àü¹® ÆíÁýÀ¸·Î Çٽɸ¸ ´ã¾Æ ÇнÀ È¿À²À» ³ôÀÎ °­ÀÇÀÔ´Ï´Ù.

ÇÁ·Î±×·¥Àº ¾î¶»°Ô ±¸Çϳª¿ä?

¾ËÁö¿À ´Â ¿ø°ÝÆò»ý±³À°¿ø À¸·Î, ÇÁ·Î±×·¥¿¡ ´ëÇÑ Á¤º¸´Â ¾Ë¼ö ¾ø½À´Ï´Ù.

3¸í ÀÌ»óÀÇ »ç¶÷µé°ú ÇÔ²² ÇнÀÇÏ½Ç ¿¹Á¤Àΰ¡¿ä? ¾ËÁö¿À ´Üü¼ö°­

¾ËÁö¿À °­ÀÇ´Â ¸¹Àº ±â¾÷¿¡¼­µµ ½Å·ÚÇÏ´Â °­ÀÇ·Î ¼±ÅõǾú½À´Ï´Ù. ¼¼±Ý°è»ê¼­ ¹ßÇà±âÁØ

  • 01.34ºÐ Data Preparation
    Data Load, Data Summarization, Data Visualization, Data Split ¹æ¹ý¿¡ ´ëÇØ ÇнÀÇÕ´Ï´Ù. (Python Lib: os, tarfile, urllib, numpy, pandas, matplitlib.pyplot µî)
    ¸Ó½Å·¯´×°­Á¿¡¼­´Â?/ÇÊ¿äÇÑ ÇÁ·Î±×·¥ ¹× ¶óÀ̺귯¸® ¼³Ä¡/Data Preparation ½Ç½À - ÆÄÀÏ ´Ù¿î·Îµå ¹× ¾ÐÃàÇ®±â/Data Load/Data Summarization/Data Visualization/Data Split/Data Split-Train,Test ºÐ¸®Çϱâ
  • 02.46ºÐ Data Understanding
    (Expansion) Data Split, (Comparison) Data Distribution, Data Visualization - Scatter, Correlation Analysis ¹æ¹ý¿¡ ´ëÇØ ÇнÀÇÕ´Ï´Ù.
    ÀÎÆ®·Î/HousingºÐ¼®/train_test_splitȰ¿ëÇϱâ/StratifiedShuffledSplit»ç¿ëÇϱâ/Error»çÇ×(Income_cat¿¡´ëÇÏ¿©)/Error»çÇ×(Income_cat¿¡´ëÇÏ¿©)2/Comparison(µ¥ÀÌÅͺñ±³)/Data_set °¡½ÃÈ­/bad_visualization/CorrelationºÐ¼®/Correlation_matrix
  • 03.42ºÐ Data Preprocessing
    Data Cleansing, Categorical Data, Pipeline ó¸® ¹æ¹ý¿¡ ´ëÇØ ÇнÀÇÕ´Ï´Ù.
    ºÒ·¯¿À±â/impute Ȱ¿ëÇϱâ/impute °ËÁõÇϱâ/Lable 󸮹æ¹ý /onehot encoding ÀÌ¿ëÇϱâ/Pipeline/Attribute_adder»ý¼º/StandardScalar ¾Ë¾Æº¸±â
  • 04.52ºÐ ML model(end-to-end)
    Model Selection, Model Training, Model Tuning¿¡ ´ëÇØ End-to-end·Î ½Ç½ÀÇÏ¿©, ±â°èÇнÀ¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ÀÌÇØµµ¸¦ ³ôÀÌ´Â ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù.
    µ¥ÀÌÅÍ ºÒ·¯¿À±â/ÈÆ·Ç¼Â Å×½ºÆ®¼Â ºÐ¸®/µ¥ÀÌÅÍÁ¤Á¦[Data preparation, Data Processing]/µ¥ÀÌÅÍÁ¤Á¦2[Data preparation, Data Processing]/Machine Learnring - Linear Regression/Machine Learnring - Mean squre Error, Mean absolute Error/Machine Learnring - Dicision Tree/Machine Learnring - CV/Machine Learnring - CV2/Machine Learnring - Random Forest/Machine Learnring - SVM
  • 05.55ºÐ Classification Part 1
    Machine Learning ¾Ë°í¸®Áò Áß ºÐ·ù¿¡ ´ëÇÑ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Model Training: SGD Classifier, Model Evaluation: Cross Validation + Precision & Recall & F1-score + ROC Curve)
    MNIST µ¥ÀÌÅÍ/MNIST µ¥ÀÌÅÍ Ã¼Å©/MNIST µ¥ÀÌÅÍÀÇ PlotȰ¿ë/MNIST µ¥ÀÌÅÍÀÇ PlotȰ¿ë2/clfÀÌ¿ëÇÏ¿© ¿¹ÃøÇϱâ/Cross Validation/Confusion Matrix¸¦ ÀÌ¿ëÇÏ¿© Æò°¡Çϱâ/Precision & Recall Trade-off/Precision & Recall Curve¸¸µé±â/Precision & Recall »çÀÌÀÇ ±×·¡ÇÁ ¸¸µé±â/ROC Curve³ªÅ¸³»±â
  • 06.33ºÐ Classification Part 2
    Machine Learning ¾Ë°í¸®Áò Áß ºÐ·ù¿¡ ´ëÇÑ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Model Building: SGDClassifier, OneVsOneClassifier, ForestClassifier, ErrorVisualization: ConfusionMatrix-Matshow, Multiple Labels Classification)
    MNIST µ¥ÀÌÅÍ ºÒ·¯¿À±â/Y lableÀÛ¼º/lable ¿øÀÎÈ®ÀÎ/Random Forest Classifier ¸¸µé±â/ConfusionMatrix È®ÀÎ/ConfusionMatrix °¡½ÃÈ­
  • 07.34ºÐ Regression Part 1
    Linear Regression¿¡ ´ëÇÑ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù.(Normal Equation, Batch Gradient Descent, Stochastic Gradient Descent, Minibatch Gradient Descent)
    Normal Equation - Á¤±Ô¹æÁ¤½Ä/Linear Regression ±×¸®±â/Batch Gradient Descent - °æ»çÇϰ­¹ý/Stochastic Gradient Descent - È®·ü/Minibatch Gradient Descent-¹Ì´Ï ¹èÄ¡°æ»ç
  • 08.34ºÐ Regression Part 2
    Other Regression¿¡ ´ëÇÑ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù.(Polynomial Regression, Logistic Regression)
    Polynomial Regression/Polynomial Regression2/Polynomial Regression3/¸ðµ¨ºñ±³Çϱâ/Logistic Regression/Logistic Regression2/Logistic Regression3
  • 09.37ºÐ SVM Part 1
    SVM ¸ðµ¨ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Comparison between Good & Bad model, Large margin classification, Sensitivity to features scale & outliers)
    SVM ¸ðµ¨ ºôµùÇϱâ/Linear SVMÀÇ ÁÁÀº¸ðµ¨°ú ³ª»Û¸ðµ¨/Linear SVMÀÇ ÁÁÀº¸ðµ¨°ú ³ª»Û¸ðµ¨2/Large Margin classification/Large Margin classification2/Large Margin classification3/Large Margin classification4
  • 10.58ºÐ SVM Part 2
    Nonlinear DatasetÀÇ SVM ¸ðµ¨ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Polynomial Kerneal, Similarity Characteristic, Gaussian RBF Kernel)
    Non-linearÀ̶õ?/Nonlinear Dataset Á¦ÀÛ/Nonlinear Dataset Á¦ÀÛ2/Polynomial Kerneal -´ÙÇׯ¯¼º/Similarity Characteristic/Kerneal Trick ÀÌ¿ë/Gaussian RBF Kernel/Gaussian RBF Kernel - plotÇ¥½Ã/Gaussian RBF Kernel - plotÇ¥½Ã2/SVM¸ðµ¨¸¸µé±â
  • 11.30ºÐ SVM Part 3
    SVM ȸ±Í(SVM Regression) ¸ðµ¨ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Linear SVR, Polynomial Kernal Trick)
    import ÀÛ¾÷ ¹× µ¥ÀÌÅÍ »ý¼º/Linear SVR/Linear SVR2/Linear SVR3/Polynomial Kernal Trick/Polynomial Kernal Trick2
  • 12.49ºÐ SVM Part 4
    SVM Background¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Decision Function, Objective Function, Hinge Loss, Training Time)
  • 13.54ºÐ DecisionTree Part 1
    Decision Tree¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Training, Visualization, Prediction Class, Sensitivity, Restriction)
  • 14.26ºÐ DecisionTree Part 2
    Regression Decision Tree¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (TreeRegressor, Comparision(DecisionTree: Classification vs. Regression), Restriction)
  • 15.34ºÐ EnsembleLearning Part 1
    Ensemble Learning Áß Voting, Bagging ¹æ¹ý¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Voting Classifier, Bagging Classifier)
  • 16.28ºÐ EnsembleLearning Part 2
    Bagging ¹æ¹ýÀÇ ´ëÇ¥ÀûÀÎ ¾Ë°í¸®ÁòÀÎ Random Forest¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Random Forest, Out-of-bag Evaluation, Feature Importance)
  • 17.59ºÐ EnsembleLearning Part 3
    Boosting ¹æ¹ý¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Ada Boosting, Gradient Boosting)
  • 18.27ºÐ Dimension Reduction Part 1
    Â÷¿øÃà¼Ò ¹æ¹ý¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Projection with PCA, Manifold Learning)
  • 19.24ºÐ Dimension Reduction Part 2
    Â÷¿øÃà¼Ò ¹æ¹ý¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (PCA, MNIST compression, Incremental PCA)
  • 20.25ºÐ Dimension Reduction Part 3
    Â÷¿øÃà¼Ò ¹æ¹ý¿¡ ´ëÇØ ÇнÀÀ» ¼öÇàÇÕ´Ï´Ù. (Kernal PCA, LLE(Locally Linear Embedding))

°­ÀǸñ·Ï ´Ù¿î·Îµå                        1:1 °­ÀÇ Áú¹®&´äº¯